私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

當前位置: 首頁 >> 產業發展 >> 正文

Enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose by coexpression of genes from two monomer supplying pathways in Escherichia coli

時間:2004-12-07
關鍵詞:Enhancement short chain length medium chain length polyhydroxyalkanoate copolymer production glucose coexpression genes two monomer supplying pathways Escherichia coli

 

C. T. Nomura1, T. Tanaka1, Z. Gan1, K. Kuwabara1, H. Abe1,2, K. Takase1,

K. Taguchi1, and Y. Doi1,2

 1 Polymer Chemistry Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

2 Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatuta, Midori-ku, Yokohoma 226-8502, Japan

 

Keywords: Polyhydroxyalkanoates; substrate specificity altered PHA synthase; 3-ketoacyl-ACP synthase III; fatty acid biosynthesis; Escherichia coli

 

      Polyhydroxyalkanoates (PHAs) are biodegradable polyesters that have a wide variety of physical properties dependent on the lengths of the pendant groups of the monomer units in the polymer. PHAs composed of mostly short-chain-length (SCL) monomers are often stiff and brittle, whereas PHAs composed of mostly medium-chain-length (MCL) monomers are elastomeric in nature. SCL-MCL PHA copolymers can have properties between these two states, dependent on the ratio of SCL and MCL monomers in the copolymer. It was found previously that SCL-MCL PHA copolymer composed of mostly SCL monomer units with a small mol% of MCL has superior qualities compared to the SCL homopolymer, P(3HB). Therefore, it is desirable to elucidate new and low cost ways to produce PHA monomers from renewable resources for the production of SCL-MCL PHA copolymer. In order to address this issue, we have created strains of recombinant E. coli capable of producing β-ketothiolase (PhbA) and acetoacetyl-CoA synthase (PhbB) from Ralstonia eutropha, genetically engineered 3-ketoacyl-ACP synthase III (FabH) from Escherichia coli, and genetically engineered PHA synthases (PhaC) from Pseudomonas sp. 61-3 to enhance the production of SCL-MCL PHA copolymer from glucose. The cumulative effect of having two monomer-supplying pathways and genetically engineered PHA synthases resulted in higher accumulated amounts of SCL-MCL PHA copolymer from glucose. Polymers were isolated from two recombinant E. coli strains, the first harboring the phbAB, fabH (F87T), and phaC1 (SCQM) genes and the second harboring the phbAB, fabH (F87W), and phaC1 (SCQM) genes.

      論文來源:International Symposium on Biological Polyesters ,Auguest 22-27, 2004

主站蜘蛛池模板: 洮南市| 桂平市| 石狮市| 封丘县| 资溪县| 沾化县| 方城县| 盐山县| 青浦区| 怀柔区| 安化县| 拜城县| 临夏市| 简阳市| 辉南县| 延川县| 长沙市| 和龙市| 商河县| 榆林市| 华蓥市| 四子王旗| 留坝县| 张掖市| 沭阳县| 贵定县| 孙吴县| 仁化县| 镶黄旗| 玉林市| 特克斯县| 安新县| 东丰县| 瑞安市| 四平市| 乌拉特后旗| 通化县| 来凤县| 宜章县| 伊金霍洛旗| 潮安县|