私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

當前位置: 首頁 >> 產(chǎn)業(yè)發(fā)展 >> 正文

Biocompatibility of chemically modified bacterial polyesters with unsaturated side chain

時間:2004-12-07
關鍵詞:Biocompatibility chemically modified bacterial polyesters unsaturated side chain 來源:International Symposium on Biological Polyesters ,Auguest 22-27, 2004

 

C. W. Chung1, H. W. Kim1,2, M. G. Chung1, and Y. H. Rhee1

 

1 Department of Microbiology, Chungnam National University, Daejeon 305-764, Korea

2 Institute of Biotechnology, Chungnam National University, Daejeon 305-764, Korea

 

Keywords: Biocompatibility, Chemical modification, Crosslink, Polyhydroxyalkanoate

 

Recently, due to their potential biodegradability and biocompatibility, bacterial polyhydroxyalkanoates (PHAs) have attracted significant commercial attention as potential new functional biomaterials for medical applications. In particular, PHAs containing unsaturated groups, such as C=C and CºC bonds, are of great interest because they can easily be modified by photochemical reactions. Crosslinking is a well-known method used to control polymer properties and generally leads to a more uniform polymer matrix with alternative physico-chemical properties. Crosslinking of unsaturated PHAs is expected to yield useful materials, such as biodegradable and biocompatible rubbers. It is also expected that crosslinked PHAs are less susceptible to biodegradation.

In this study, we describe the preparation of polymers with improved mechanical properties by thermal crosslinking of an unsaturated PHA and the biocompatibilities of resulting polymers. An amorphous MCL-PHA consisting of 90 mol% unsaturated repeating units, which possesses the number average molecular weight of approximately 50000, was produced by P. oleovorans ATCC 29347 from a mixture of 10% nonanoic acid and 90% 10-undecenoic acid. The unsaturated PHA was crosslinked by heating in the presence of 10 wt% benzoylperoxide as a cross-linker. Water contact angle and adhesive force of prepared film surfaces were measured by a sessile drop method and peel test, respectively. The surface of film was analyzed by electron element (ESCA). The material properties of the crosslinked PHAs (CL-PHAs) were determined by using differential scanning calorimetric, atomic force microscopy and thermogravimetric analyses as well as instron. The degree of crosslinking of the polymers was measured by FT-IR. In order to evaluate the cell and blood compatibility of the CL-PHAs, the cellular behavior of Chinese hamster ovary (CHO) cells and platelet-surface interaction on CL-polymers were investigated and compared to that on the original polymer. Of the PHAs tested, the CL-PHA with 50% of crosslinking density was the most biocompatible for CHO cells, and this CL-PHA was also found to be more biocompatible than poly(L-lactide). In addition, the increase of crosslinking density of the polymers resulted in the decrease of cell and platelet adhesion on the surface of polymer films. The results indicated that some CL-PHAs prepared in this study were very suitable as biocompatible materials for various biomedical applications.

 

[1]   Williams, S.F., et al., 1999. Int. J. Biol. Macromol. 25, 111.

[2]   Kim, D.Y., et al., 1998. Macromolecules 31, 4760.

[3]   Chung, C.W., et al., 2003. Int. J. Biol. Macromol. 32, 17.

 

       論文來源:International Symposium on Biological Polyesters ,Auguest 22-27, 2004

主站蜘蛛池模板: 张家港市| 新巴尔虎右旗| 鸡西市| 兴和县| 博野县| 南昌县| 曲靖市| 连城县| 会泽县| 贞丰县| 屏东市| 怀化市| 耿马| 兴和县| 科技| 桦甸市| 苗栗县| 故城县| 辉南县| 临泉县| 顺昌县| 松溪县| 榆社县| 大悟县| 吉首市| 乌海市| 岢岚县| 丰城市| 兰坪| 洞口县| 原平市| 仙居县| 台东市| 正镶白旗| 汝阳县| 库尔勒市| 安阳县| 兴海县| 五河县| 平潭县| 叙永县|