私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

搜索:  
Fabrication of Phosphate-Imprinted PNIPAM/SiO2 Hybrid Particles and Their Phosphate Binding Property  
Fabrication of Phosphate-Imprinted PNIPAM/SiO2 Hybrid Particles and Their Phosphate Binding Property
資料類型: PDF文件
關鍵詞: N-isopropylacrylamide  molecular  imprinting  polymer/inorganic  phosphate  binding  
資料大小: 886k
所屬學科: 通用高分子材料
來源: 來源網絡
簡介:
A SiO2 microsphere imprinted by phosphate ions was prepared with the use of phosphate ion as the template molecule and tetraethoxysilane as the precursor. Thereafter, the imprinted SiO2 microspheres were modified with 3-(trimethoxysilyl)propyl methacrylate (TMSPMA@SiO2), followed by introducing the double bond. In the presence of TMSPMA@SiO2, using N-isopropylacrylamide as monomer, and potassium persulfate as initiator, polymer/inorganic hybrid particles (PNIPAM/SiO2) were prepared. Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption test, and transmission electron microscope were employed for the characterization of molecular imprinted SiO2 microspheres and PNIPAM/SiO2 hybrid particles. The effects of phosphate concentration, pH value, and adsorption temperature on the phosphate binding properties of PNIPAM/SiO2 hybrid particles were studied by UV-vis spectrophotometer. The experimental results shed light on the fact that the PNIPAM structure is beneficial for the improvement of the adsorption ability of phosphate-imprinted SiO2microspheres. With the increase in the initial phosphate concentration, the adsorption capacity of hybrid particles to phosphate ions increased to 274 mg/g at pH = 7 and 15 °C. The acid condition and the temperature below the low critical solution temperature (LCST) of PNIPAM are favorable to the adsorption of phosphate ions by PNIPAM/SiO2 hybrid particles, and the maximum adsorption capacity can reach 287 mg/g (at pH = 5 and 15 °C). The phosphate imprinted polymer/inorganic hybrid material is expected to be put to use in the fields of phosphate ions adsorption, separation, and recovery.
上傳人: caozheng
上傳時間: 2020-03-04 0:50:35
下載次數: 0
消耗積分: 0  
立即下載:
1人
1人
1人
友情提示:下載后對該資源進行評論,即可獎勵2分。
報告錯誤:  1.下載無效  2. 資料明顯無價值  3. 資料重復存在

相關評論 共有0人發表評論 更多評論
你還沒有登錄,無法發表評論,請首先 登錄 注冊
免責聲明:本站部分資源由網友推薦,來自互聯網,版權屬于原版權人,如果不慎侵犯到您的權利,敬請告知,我們會在第一時間撤除。本站中各網友的評論只代表其個人觀點,不代表本站同意其觀點。
主站蜘蛛池模板: 石家庄市| 伊春市| 佛坪县| 遂平县| 南漳县| 汪清县| 昭平县| 怀化市| 夏津县| 娄底市| 万宁市| 葵青区| 兴业县| 梁平县| 阿尔山市| 唐河县| 温宿县| 措勤县| 定日县| 综艺| 花莲市| 兰溪市| 曲靖市| 迭部县| 文登市| 抚顺市| 许昌市| 安西县| 漳浦县| 旅游| 偏关县| 乃东县| 大兴区| 遵化市| 彰武县| 青州市| 楚雄市| 桃园县| 凤冈县| 凤阳县| 涟水县|