私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關鏈接
聯系方式
  • 通信地址:天津市西青區賓水西道399號天津工業大學化學與化工學院化學工程與工藝系6D518
  • 郵編:300387
  • 電話:022-83955663
  • 傳真:022-83955663
  • Email:bianxihui@163.com
當前位置:> 首頁 > 論文著作 > 正文
Grey wolf optimizer for variable selection in quantification of quaternary edible blend oil by ultraviolet-visible spectroscopy
作者:Rongling Zhang, Xinyan Wu, Yujie Chen, Yang Xiang, Dan Liu, Xihui Bian*
關鍵字:Edible blend oil; Spectral analysis; Variable selection; Multivariate calibration; Grey wolf optimizer
論文來源:期刊
具體來源:Molecules, 2022, 27 (16), 5141
發表時間:2022年

   A novel swarm intelligence algorithm, discretized grey wolf optimizer (GWO), was introduced as a variable selection tool in edible blend oil analysis for the first time. In the approach, positions of wolves were updated and then discretized by logical function. The performance of wolf pack, the iteration number and the number of wolves were investigated. The partial least squares (PLS) was used to establish and predict single oil contents in samples. To validate the method, 102 edible blend oil samples containing soybean oil, sunflower oil, peanut oil and sesame oil were measured by ultraviolet-visible (UV-Vis) spectrophotometer. Results demonstrate that GWO-PLS models can provide best prediction accuracy with least variables compared with full-spectrum PLS, Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). The determination coefficients (R2) of GWO-PLS are all above 0.95. Therefore, the research indicates the feasibility of using discretized GWO for variable selection in rapid determination of quaternary edible blend oil.

主站蜘蛛池模板: 渭源县| 四会市| 浪卡子县| 错那县| 阿合奇县| 西丰县| 汨罗市| 高邮市| 邯郸县| 石城县| 和田县| 乌审旗| 涟源市| 潞西市| 错那县| 环江| 喀喇沁旗| 淳安县| 南城县| 邓州市| 蒙山县| 水城县| 拉萨市| 教育| 台中县| 唐山市| 永清县| 乌兰县| 潞西市| 钟祥市| 铅山县| 永清县| 盐边县| 乐平市| 海伦市| 安泽县| 同心县| 上虞市| 寿阳县| 咸宁市| 峨边|