私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:天津市西青區(qū)賓水西道399號天津工業(yè)大學(xué)化學(xué)與化工學(xué)院化學(xué)工程與工藝系6D518
  • 郵編:300387
  • 電話:022-83955663
  • 傳真:022-83955663
  • Email:bianxihui@163.com
當(dāng)前位置:> 首頁 > 論文著作 > 正文
Grey wolf optimizer for variable selection in quantification of quaternary edible blend oil by ultraviolet-visible spectroscopy
作者:Rongling Zhang, Xinyan Wu, Yujie Chen, Yang Xiang, Dan Liu, Xihui Bian*
關(guān)鍵字:Edible blend oil; Spectral analysis; Variable selection; Multivariate calibration; Grey wolf optimizer
論文來源:期刊
具體來源:Molecules, 2022, 27 (16), 5141
發(fā)表時(shí)間:2022年

   A novel swarm intelligence algorithm, discretized grey wolf optimizer (GWO), was introduced as a variable selection tool in edible blend oil analysis for the first time. In the approach, positions of wolves were updated and then discretized by logical function. The performance of wolf pack, the iteration number and the number of wolves were investigated. The partial least squares (PLS) was used to establish and predict single oil contents in samples. To validate the method, 102 edible blend oil samples containing soybean oil, sunflower oil, peanut oil and sesame oil were measured by ultraviolet-visible (UV-Vis) spectrophotometer. Results demonstrate that GWO-PLS models can provide best prediction accuracy with least variables compared with full-spectrum PLS, Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). The determination coefficients (R2) of GWO-PLS are all above 0.95. Therefore, the research indicates the feasibility of using discretized GWO for variable selection in rapid determination of quaternary edible blend oil.

主站蜘蛛池模板: 永城市| 阿克陶县| 右玉县| 电白县| 达尔| 舟曲县| 安义县| 额尔古纳市| 天津市| 高要市| 忻城县| 新竹县| 宜兰县| 甘孜| 凌源市| 醴陵市| 罗江县| 南华县| 永济市| 溧阳市| 象山县| 来凤县| 六枝特区| 都兰县| 延边| 滦南县| 阜平县| 同心县| 武汉市| 平舆县| 庄河市| 蛟河市| 海阳市| 海兴县| 安岳县| 康定县| 抚松县| 平昌县| 怀宁县| 六安市| 乡城县|