私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關鏈接
聯(lián)系方式
  • 通信地址:天津市西青區(qū)賓水西道399號天津工業(yè)大學化學與化工學院化學工程與工藝系6D518
  • 郵編:300387
  • 電話:022-83955663
  • 傳真:022-83955663
  • Email:bianxihui@163.com
當前位置:> 首頁 > 論文著作 > 正文
Grey wolf optimizer for variable selection in quantification of quaternary edible blend oil by ultraviolet-visible spectroscopy
作者:Rongling Zhang, Xinyan Wu, Yujie Chen, Yang Xiang, Dan Liu, Xihui Bian*
關鍵字:Edible blend oil; Spectral analysis; Variable selection; Multivariate calibration; Grey wolf optimizer
論文來源:期刊
具體來源:Molecules, 2022, 27 (16), 5141
發(fā)表時間:2022年

   A novel swarm intelligence algorithm, discretized grey wolf optimizer (GWO), was introduced as a variable selection tool in edible blend oil analysis for the first time. In the approach, positions of wolves were updated and then discretized by logical function. The performance of wolf pack, the iteration number and the number of wolves were investigated. The partial least squares (PLS) was used to establish and predict single oil contents in samples. To validate the method, 102 edible blend oil samples containing soybean oil, sunflower oil, peanut oil and sesame oil were measured by ultraviolet-visible (UV-Vis) spectrophotometer. Results demonstrate that GWO-PLS models can provide best prediction accuracy with least variables compared with full-spectrum PLS, Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). The determination coefficients (R2) of GWO-PLS are all above 0.95. Therefore, the research indicates the feasibility of using discretized GWO for variable selection in rapid determination of quaternary edible blend oil.

主站蜘蛛池模板: 贡觉县| 民和| 梁河县| 冕宁县| 年辖:市辖区| 怀安县| 三河市| 建宁县| 玉门市| 扎鲁特旗| 民乐县| 紫云| 翼城县| 五寨县| 浑源县| 桦南县| 辽阳县| 密山市| 化德县| 固安县| 沐川县| 清远市| 永新县| 宝应县| 瓦房店市| 大厂| 达日县| 新龙县| 柘城县| 辛集市| 长武县| 来凤县| 亳州市| 天气| 宜兰市| 峨山| 郯城县| 喀喇沁旗| 保靖县| 乌审旗| 米脂县|