私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關鏈接
聯系方式
  • 通信地址:天津市西青區賓水西道399號天津工業大學化學與化工學院化學工程與工藝系6D518
  • 郵編:300387
  • 電話:022-83955663
  • 傳真:022-83955663
  • Email:bianxihui@163.com
當前位置:> 首頁 > 論文著作 > 正文
Evaluation of calibration data for partial least squares modeling by using Monte Carlo cross validation
作者:Jiajun Wang, Zhengfeng Li, Luoping Wang, Xihui Bian, Wensheng Cai, Xueguang Shao*
關鍵字:Near infrared spectroscopy, Partial least squares regression, Monte Carlo cross validation, Outlier, Noise
論文來源:期刊
具體來源:Computers and Applied Chemistry, 2015, 32 (12): 1530-1536
發表時間:2015年

A method based on Monte Carlo cross validation (MCCV) is proposed for evaluation of calibration data for partial least squares (PLS) regression. In the method, the root mean squared error of cross validation (RMSECV) is calculated as usual using the prediction errors in the MCCV, and another RMSECV is calculated using the prediction errors of the samples that are selected for building the models. The latter is denoted as RMSECVc. If there is no interfering factor in the calibration data, e.g., outlier, noise, or nonlinear responses, the variation of RMSECV and RMSECVc with the latent variable (LV) number will be in a same trend. Otherwise, there will be a difference between the two values after an LV number when the interfering factors are encoded in the model. Therefore, a comparison of the RMSECV and RMSECVc curves can be used for detecting the interfering factors contained in the calibration data. A simulated dataset and 12 real near infrared spectroscopic datasets were used to test the proposed method. The effect of outliers in four real datasets was analyzed. The results show that the method provides a useful tool for evaluation of the calibration dataset and the quality of PLS models.

主站蜘蛛池模板: 商洛市| 缙云县| 安顺市| 新源县| 南汇区| 北川| 万年县| 专栏| 巴南区| 南丰县| 梅州市| 佳木斯市| 南丹县| 贺兰县| 通辽市| 滨海县| 渑池县| 汝南县| 玛多县| 巴青县| 阳原县| 张家口市| 晋中市| 文安县| 天镇县| 恭城| 高雄县| 仙桃市| 柘城县| 余干县| 昌平区| 桃园市| 武定县| 开阳县| 天全县| 衡东县| 唐山市| 虞城县| 大厂| 郎溪县| 乐亭县|