私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關鏈接
聯系方式
  • 通信地址:天津市西青區賓水西道399號天津工業大學化學與化工學院化學工程與工藝系6D518
  • 郵編:300387
  • 電話:022-83955663
  • 傳真:022-83955663
  • Email:bianxihui@163.com
當前位置:> 首頁 > 論文著作 > 正文
Machine learning-assisted carbon dots synthesis and analysis: State of the art and future directions
作者:Fanyong Yan*, Ruixue Bai, Juanru Huang, Xihui Bian, Yang Fu*
關鍵字:Carbon dots, Machine learning, Spectroscopy analysis, Optimized synthesis, Mechanistic elaboration
論文來源:期刊
具體來源:TrAC Trends in Analytical Chemistry, 2025, 184, 118141
發表時間:2025年

Carbon dots (CDs) are considered to be one of the key nanomaterials for novel sensors and detection platforms. While the limitations, including long synthesis cycles and complex data handling, still remain. The machine learning (ML), a powerful tool in accelerating analysis and optimizing results, exhibits elevated precision and generalizability, assumes a pivotal role when integrated with CDs. This review summarizes the recent advancements in ML-assisted CDs technologies, encompassing synthesis and analysis. It provides insight into model architecture, where traditional models are used for spectroscopy classification and quantification, while ensemble learning and neural networks improve modelling accuracy. Additionally, interspersed models and density functional theory (DFT) are integrated as needed. Paving the way for the application of ML in the synthesis, analysis, optimization, and elaboration of CDs. Lastly, the challenges and future prospects of the combination are described.

主站蜘蛛池模板: 勐海县| 东源县| 永康市| 沁水县| 眉山市| 工布江达县| 阿尔山市| 昭觉县| 泾阳县| 海淀区| 衡水市| 海林市| 太和县| 鄱阳县| 新泰市| 乐平市| 龙口市| 卢氏县| 石门县| 当阳市| 双柏县| 南城县| 清流县| 青阳县| 安吉县| 乌兰察布市| 晋江市| 博湖县| 博罗县| 仙游县| 布拖县| 萝北县| 尼勒克县| 凌云县| 宁国市| 马龙县| 济源市| 临城县| 天等县| 两当县| 嵊泗县|