私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:寧波市鎮海區中官西路1219號
  • Zip:315201
  • Tel:+86-574-86621498
  • Fax:
  • Email:tao.chen@nimte.ac.cn
Current Location :> Home > Publications > Text
[Angew. Chem. Int. Ed.] Aggregation Induced Emissive Carbon Dots Gels for Octopus-Inspired Shape/Color Synergistically Adjustable Actuator
writer:Shuangshuang Wu, H. Shi, Wei Lu,* S. Wei, H Shang, H. Liu, M. Si, X. Le, P. Theato, Tao Chen*
keywords:aggregation induced emission ? carbon dots ? fluorescent gel ? actuator ? soft robot
source:期刊
specific source:Angew. Chem. Int. Ed., 2021, inpress
Issue time:2021年

Some living organisms such as the octopus have fantastic abilities to simultaneously swim away and alter body color/morphology for disguise and self-protection, especially when there is a threat perception. However, it is still quite challenging to construct artificial soft actuators with octopus-like synergistic shape/color change and directional locomotion behaviors, but such systems could enhance the functions of soft robotics dramatically. Herein, we proposed to utilize unique hydrophobic carbon dots (CDs) with rotatable surficial groups to construct the aggregation-induced emission (AIE) active glycol CDs polymer gel, which could be further employed to be interfacially bonded to an elastomer to produce anisotropic bilayer soft actuator. When putting the actuator on a water surface, glycol spontaneously diffused out from the gel layer to allow water intake, resulting in a color change from a blue dispersion fluorescence to red AIE and a shape deformation, as well as a large surface tension gradient that can promote its autonomous locomotion. Based on these findings, artificial soft swimming robots with octopus-like synergistic shape/color change and directional swimming motion were demonstrated. This study provides an elegant strategy to develop advanced multi-functional

bio-inspired intelligent soft robotics.