私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:寧波市鎮海區中官西路1219號
  • Zip:315201
  • Tel:+86-574-86621498
  • Fax:
  • Email:tao.chen@nimte.ac.cn
Current Location :> Home > Publications > Text
[ACS Appl. Mater. Interfaces] Organohydrogel Actuators with Adjustable Stimulus Responsiveness for On-Demand Morphing
writer:Danyang Li, Xiaoxia Le,* Shuxin Wei, Hui Shang, Fuqing Shan, Guorong Gao, Jintao Yang,* and Tao Chen
keywords:stimulus responsive, zwitterionic polymer, organohydrogel actuator, on-demand morphing, anisotropic structure
source:期刊
specific source:ACS Appl. Mater. Interfaces 2023, doi.org/10.1021/acsami.3c00882
Issue time:2023年

Hydrogel actuators showing shape morphing in response to external stimuli are of significant interest for their applications in soft robots, artificial muscles, etc. However, there is still a lack of hydrogel actuators with adjustable stimulus responsiveness for on-demand driving. In this study, an organohydrogel actuator was prepared by a two-step interpenetrating method, resulting in the coexistence of poly(N-isopropylacrylamide-co-4-(2-sulfoethyl)-1-(4-vinylbenzyl) pyridinium betaine) (p(NIPAM-SVBP)) hydrophilic networks and poly(lauryl methacrylate) (pLMA) hydrophobic networks with gradient distribution. In the initial state, the organohydrogel actuator can be driven globally under thermal stimulation. Owing to the unique alkali-chromic performance of SVBP, the organohydrogel actuator can be endowed with photothermal properties and actuate

locally under the stimulus of NIR light. More importantly, the organohydrogel will return to the original colorless state after being treated with acid solution. Our work provides a new insight into designing and fabricating novel actuators with adjustable stimulus responsiveness for on-demand morphing.