私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:長春市前進大街2699號吉林大學超分子樓
  • Zip:130012
  • Tel:0431-85168491
  • Fax:
  • Email:
Current Location :> Home > Publications > Text
ChemEurJ--Cyclodextrin-derived mimic of glutathione peroxidase exhibiting enzymatic specificity and high catalytic efficiency
writer:Dong, ZY; Huang, X; Mao, SZ; et al.
keywords:Cyclodextrin, Glutathione Peroxidase, Artificial Enzymes
source:期刊
Issue time:2006年
To elucidate the relationships between molecular recognition and catalytic ability, we chose three assay systems using three different thiol substrates, glutathione (GSH), 3-carboxyl-4-nitrobenzenethiol (CNBSH), and 4-nitrobenzenethiol (NBSH), to investigate the glutathione peroxidase (GPx) activities of 2,2′-ditellurobis(2-deoxy-β-cyclodextrin) (2-TeCD) in the presence of a variety of structurally distinct hydroperoxides (ROOH), H2O2, tert-butyl peroxide (tBuOOH), and cumene peroxide (CuOOH), as the oxidative reagent. A comparative study of the three assay systems revealed that the cyclodextrin moiety of the GPx mimic 2-TeCD endows the molecule with selectivity for ROOH and thiol substrates, and hydrophobic interactions are the most important driving forces in 2-TeCD complexation. Furthermore, in the novel NBSH assay system, 2-TeCD can catalyze the reduction of ROOH about 3.4×105 times more efficiently than diphenyl diselenide (PhSeSePh), and its second-order rate constants for thiol are similar to some of those of native GPx. This comparative study confirms that efficient binding of the substrate is essential for the catalytic ability of the GPx mimic, and that NBSH is the preferred thiol substrate of 2-TeCD among the chosen thiol substrates. Importantly, the proposed mode of action of 2-TeCD imitates the role played by several possible noncovalent interactions between enzymes and substrates in influencing catalysis and binding.