私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:長春市延安大街2055號 長春工業大學 科研樓704房間
  • Zip:130012
  • Tel:+86-431-85717352
  • Fax:+86-431-85716465
  • Email:ghgao@ccut.edu.cn
Current Location :> Home > Publications > Text
40. Tough and ultrastretchable hydrogels reinforced by poly(butyl acrylate-co-acrylonitrile) latex microspheres as crosslinking centers for hydrophobic association
writer:Wei Zhao, Lijie Duan, Baoyuan Zhang, Xiuyan Ren, Guang Hui Gao
keywords:Tough hydrogels, Ultrastretchable ,Latex microspheres, Dipole-dipole interaction ,Hydrophobic association
source:期刊
specific source:Polymer
Issue time:2017年
  In our previous work, poly(butyl acrylate) (PBA) latex microspheres (LMs) were embedded within hydrogels to enhance their mechanical strength. Herein, acrylonitrile (AN) components were added to the latex system to prepare novel poly(butyl acrylate-acrylonitrile) (P(BA-AN)) LMs. LMs were able to adsorb hydrophobic hexadecyl methacrylate (HMA) due to hydrophobic interactions, stabilized by using sodium dodecyl sulfate as a surfactants. The HMA could occur radical copolymerization with acrylamide (AAm) under the redox initiators to form P(HMA-AAm)-P(BA-AN) hydrogels. The intra and interchain non-permanent binding could be promoted in P(BA-AN) LMs due to the dipole-dipole interactions of -CN groups from acrylonitrile. As a result, P(BA-AN) LMs were utilized to fabricate tough hydrogels as crosslinking centers for hydrophobic association. The mechanical properties of the hydrogels exhibited a fracture stress of 775 KPa, an ultrastretchable strain of 3600% and a fracture energy of approximately 7600 KJ/m3. This innovative design strategy for LMs capable of strong physicochemical interactions, including electrostatic and hydrogen-bond interactions and coordination effects, may open a novel direction for the production of tough hydrogels.