私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

當前位置:> 首頁 > 最新動態 > 正文
【2021-11】組內論文在Journal of Colloid and Interface Science發表,Congratulations 郝亮和牛冉老師

Liang Hao, Ning Liu, Huiying Bai, Panpan He, Ran Niu*, Jiang Gong*

High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels

Journal of Colloid and Interface Science (2021) Accept (IF2021 = 8.128)

Hydrogel has been regarded as one of the most promising candidates for next-generation solar evaporation technology to produce freshwater from non-potable water. However, synthesizing hydrogel absorbers that can precisely regulate water state and significantly reduce the water vaporization enthalpy remains a grand challenge. Herein, we report the rational design of a novel hydrogel hybrid solar evaporator constructed by poly(vinyl alcohol) and sodium lignosulfonate (SLS), with addition of carbon nanotube as a light absorption material. The abundant sulfonate and hydroxyl groups of SLS enhance the interplay between hydrogel and water molecule through electrostatic interaction and hydrogen bond. As such, the presence of SLS not only remarkably promotes the hydrophilicity and water transport of hydrogel, but also precisely tunes the state of water molecule and the content of intermediate water for reducing the water vaporization enthalpy. The combined advantageous features endow the as-prepared hydrogel with an evaporation rate up to 2.09 kg m-2 h-1 under 1 Sun illumination, along with good anti-acid/basic abilities, antibacterial property, high salt-tolerance, and self-cleaning capability in purifying different types of wastewater. Finally, an outdoor solar seawater desalination device is designed to generate drinking water from seawater. The daily drinking water production amount per square meter is ca. 13 kg, which satifies the five adults'' daily water consumption (12.5 kg). The present study highlights that rationally constructing the molecular architecture of hydrogel and tuning the interplay between water and hydrogel are effective strategies to fabricate advanced hydrogel solar evaporators for addressing the global freshwater shortage.

主站蜘蛛池模板: 托里县| 华亭县| 云霄县| 舞钢市| 分宜县| 晴隆县| 彩票| 荥阳市| 贞丰县| 鄂伦春自治旗| 南康市| 晋江市| 驻马店市| 荆州市| 江津市| 台江县| 阳东县| 吉安县| 如皋市| 东乌珠穆沁旗| 浮山县| 商南县| 织金县| 沈丘县| 虞城县| 海盐县| 正镶白旗| 河津市| 克拉玛依市| 宁陵县| 凤山市| 梓潼县| 富顺县| 峡江县| 天水市| 册亨县| 垦利县| 沙雅县| 夏津县| 邢台市| 雷波县|