私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:上海市楊浦區四平路1239號同濟大學工程試驗館224室
  • Zip:200092
  • Tel:010-65981097
  • Fax:
  • Email:hongbogu2014@tongji.edu.cn
Current Location :> Home > Publications > Text
(ACS Appl. Mater. Interfaces) Polyaniline Stabilized Magnetite Nanoparticles Reinforced Epoxy Nanocomposites
writer:H. Gu, S. Tadakamalla, Y. Huang, H. A. Colorado, Z. Luo, N. Haldolaarachchige, D. P. Young, S. Wei,
keywords:Polyaniline, Magnetite Nanoparticles, Epoxy Nanocomposites
source:期刊
specific source:ACS Applied Materials & Interfaces
Issue time:2012年

Magnetic epoxy polymer nanocomposites (PNCs) reinforced with magnetite (Fe3O4) nanoparticles (NPs) have been prepared at different particle loading levels. The particle surface functionality tuned by conductive polyaniline (PANI) is achieved via a surface initiated polymerization (SIP) approach. The effects of nanoparticle loading, surface functionality, and temperature on both the viscosity and storage/loss modulus of liquid epoxy resin suspensions and the physicochemical properties of the cured solid PNCs are systematically investigated. The glass transition temperature (Tg) of the cured epoxy filled with the functionalized NPs has shifted to the higher temperature in the dynamic mechanical analysis (DMA) compared with that of the cured pure epoxy. Enhanced mechanical properties of the cured epoxy PNCs filled with the functionalized NPs are observed in the tensile test compared with that of the cured pure epoxy and cured epoxy PNCs filled with as-received NPs. The uniform NP distribution in the cured epoxy PNCs filled with functionalized NPs is observed by scanning electron microscope (SEM). These magnetic epoxy PNCs show the good magnetic properties and can be attached by a permanent magnet. Enhanced interfacial interaction between NPs and epoxy is revealed in the fracture surface analysis. The PNCs formation mechanism is also interpreted from the comprehensive analysis based on the TGA, DSC, and FTIR in this work.