私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:上海市楊浦區四平路1239號同濟大學工程試驗館224室
  • Zip:200092
  • Tel:010-65981097
  • Fax:
  • Email:hongbogu2014@tongji.edu.cn
Current Location :> Home > Publications > Text
(RSC Adv.) Magnetic amine-functionalized polyacrylic acid-nanomagnetite for hexavalent chromium removal from polluted water
writer:F. Gao, H. Gu*, H. Wang, X. Wang, B. Xiang, and Z. Guo
keywords:Magnetic, amine-functionalized polyacrylic acid-nanomagnetite, hexavalent chromium
source:期刊
specific source:RSC Advances
Issue time:2015年
     A novel magnetic amine-functionalized polyacrylic acid-nanomagnetite (Fe3O4-PAA-NH2) adsorbent prepared using a facile surface-initiated polymerization (SIP) method has delivered a great Cr(VI) removal performance compared to as-received Fe3O4 nanoparticles. The maximum amine group (–NH2) concentration grafted onto Fe3O4-PAA is determined to be 3.925 mg g?1 based on acid–base titrimetric analysis. The optimal pH value for Cr(VI) adsorption is around 2.0 with a Fe3O4-PAA-NH2 dose of 30 mg and contact time of 10 min at room temperature. A multilayer adsorption for the Freundlich isotherm model is well-fitted and fits better than the monolayer adsorption of the Langmuir isotherm model. The kinetics of Cr(VI) removal by the Fe3O4-PAA-NH2 nanoadsorbent is found to follow pseudo-second-order behavior with a calculated room temperature rate constant of 1.23 g mg?1 min?1 for a solution with an initial Cr(VI) concentration of 7.0 mg L?1 and pH value of 2.5. The competition adsorption tests show that the presence of other metals in polluted water, including Cu(II), Zn(II), Cd(II), K(I), Ca(II), Na(I), and Mg(II), favors the Cr(VI) adsorption by the fabricated Fe3O4-PAA-NH2 nanoadsorbent due to the affinity of the chemical potential and electronegativity of each metallic element. Moreover, the prepared Fe3O4-PAA-NH2 nanoadsorbent exhibits a good reusability and retains around 85% of its Cr(VI) adsorption capacity even after 5 cycles.