私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市友誼西路127號
  • Zip:710072
  • Tel:029-88431638
  • Fax:
  • Email:nwpugjw@163.com
Current Location :> Home > Publications > Text
[Polymer]Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-Octene copolymers
writer:Xingru Yan, Junwei Gu#*, Jiang Guo, Jingfang Yu, Mojammel Alam Khan, Alexandra Maria Galaska, Lu
keywords:Giant magnetoresistance; Electrical conductivity; Surface gelation
source:期刊
specific source:Polymer
Issue time:2016年

High electrical conductivity in ethylene/1-octene copolymers (EOCs) was achieved by sticking CNTs onto the gelated EOCs pellet surface and the subsequent hot pressing. The electrical conductivity (s) was observed to be dependent on the pressing temperature and the CNT loading. Variable range hopping (VRH) mechanistic study revealed a 3-d electron transport mechanism. Both unique positive and negative magnetoresistance (MR) phenomena were observed in these polymer nanocomposites (PNCs) and theoretically analyzed by two different models (wavefunction shrinkage model for positive GMR vs. forward interference model for negative GMR). Other properties were tested and analyzed as well. Neat EOCs and their nanocomposites exhibited both Newtonian and shear thinning behaviors under melting state. Less internal chainchain friction heat was generated than that of neat EOCs after applying the same oscillation frequencies. The increased thermal stability of EOC nanocomposites was observed with increasing the CNTs loading. An increased thermal conductivity (λ) was observed arising from the formed CNTs network.

http://www.sciencedirect.com/science/article/pii/S0032386116308552