私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:福建省福州市閩侯縣上街鎮(zhèn)福建農(nóng)林大學(xué)旗山校區(qū)
  • Zip:350108
  • Tel:18502093393
  • Fax:
  • Email:liaogf@fafu.edu.cn
Current Location :> Home > Publications > Text
31-Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities
writer:Hai Zhu, Si Cai, Guangfu Liao, Zhong Feng Gao, Xuehong Min, Yu Huang*, Shiwei Jin*, and Fan Xia,
keywords:Hydrophobicity,Oxides,Photocatalysis,Photocatalysts,Wetting
source:期刊
specific source:https://doi.org/10.1021/acscatal.1c04049
Issue time:2021年
In the field of interface science, superwettability and photocatalysis are two significant research hot spots. Currently, wettability has been proved to be a decisive factor to enhance photocatalytic activity, such as self-cleaning, degradation efficiency, water purification, antibacterial, gas evaluation, reduction, fixation, H2O2 generation, and so on. In this review, we summarize the recent developments of photocatalysts based on varied bioinspired wettabilities. In the beginning, the amazing wetting behaviors of natural creatures, i.e., superhydrophilic fish scale and clam shell, superhydrophobic lotus leaf and rose petal, patterned wettable desert beetle, slippery pitcher plant, and oleophobic springtail were are and their corresponding wetting models are also exhibited. Subsequently, the catalytic mechanisms of titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) are discussed. Subsequently, materials based on bioinspired superwetting, including (super)hydrophilicity, superhydrophobicity, patterned superwetting, responsive (super)wetting, Janus (super)wetting, slippery, and superamphiphobicity, are respectively exemplified. Finally, concerns and outlooks related to bioinspired superwettable photocatalysts are proposed. It is believed that bioinspired superwetting in photocatalysis will become an emerging research hot spot in the near future.