- 劉天西 教授
- 東華大學材料科學與工程學院 / 纖維材料改性國家重點實驗室
- 網址: liutianxi.polymer.cn 訪問量:2091214
227. Diameter-Controlled Synthesis and Capacitive Performance of Mesoporous Dual-Layer MnO2 Nanotubes.
作者:Y. P. Huang, Z. Y. Liang, Y. E. Miao, T. X. Liu*
關鍵字:Mesoporous Dual-Layer MnO2 Nanotubes, Supercapacitors
論文來源:期刊
具體來源:ChemNanoMat, 2015, 1(3), 159-166.
發表時間:2015年
Mesoporous dual-layer MnO2 nanotubes assembled from well-aligned MnO2 nanosheets are synthesized via a facile and efficient sacrificial template method. To begin with, the self-standing carbon nanofibrous membranes are prepared via electrospinning and high-temperature carbonization, followed by an in situ redox reaction in KMnO4 solution to coat the carbon nanofiber (CNF) template with MnO2 nanosheets until the CNFs are consumed. The synthesized dual-layer MnO2 nanotubes are composed of an inner shell of packed MnO2, and an outer shell of mesoporous sheetlike MnO2. Importantly, the dimensions of the MnO2 nanotubes can be easily controlled by tuning parameters including CNF diameter and redox reaction temperature. The MnO2 nanotube electrode thus prepared manifests excellent cycling stability with a specific capacitance of 231 F g-1 and an areal capacitance of 309 mF cm-2 for supercapacitors. This approach opens up a new way for designing MnO2 nanostructures as promising electrode materials.
關鍵字:Mesoporous Dual-Layer MnO2 Nanotubes, Supercapacitors
論文來源:期刊
具體來源:ChemNanoMat, 2015, 1(3), 159-166.
發表時間:2015年
Mesoporous dual-layer MnO2 nanotubes assembled from well-aligned MnO2 nanosheets are synthesized via a facile and efficient sacrificial template method. To begin with, the self-standing carbon nanofibrous membranes are prepared via electrospinning and high-temperature carbonization, followed by an in situ redox reaction in KMnO4 solution to coat the carbon nanofiber (CNF) template with MnO2 nanosheets until the CNFs are consumed. The synthesized dual-layer MnO2 nanotubes are composed of an inner shell of packed MnO2, and an outer shell of mesoporous sheetlike MnO2. Importantly, the dimensions of the MnO2 nanotubes can be easily controlled by tuning parameters including CNF diameter and redox reaction temperature. The MnO2 nanotube electrode thus prepared manifests excellent cycling stability with a specific capacitance of 231 F g-1 and an areal capacitance of 309 mF cm-2 for supercapacitors. This approach opens up a new way for designing MnO2 nanostructures as promising electrode materials.