私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市未央區北大學城陜西科技大學
  • Zip:710021
  • Tel:029-86168315
  • Fax:
  • Email:liweihg@sust.edu.cn
Current Location :> Home > Publications > Text
Fabrication of hierarchical BiOCl-CoP heterojunction on magnetic mesoporous silica microspheres with double-cavity structure for effective photocatalysis.
writer:W. Li, S. He, Q. Ma, X. Wang, C. Zhao.
keywords:Bismuth oxychloride Cobalt phosphide Mesoporous silica Photocatalysis Magnetic separation
source:期刊
specific source:https://doi.org/10.1016/j.apsusc.2019.06.161
Issue time:2019年

In this research, the magnetic mesoporous silica microspheres with double-cavity structure (DHFS) were first synthesized by combining the hydrothermal technique, sol-gel hydrolysis and chemical etching method, then the BiOCl-CoP-x (BC-x, x = 1, 2, 3) heterojunctions were fabricated on the surface of the amino-functionalized DHFS microspheres. The morphologies, crystal characteristics, compositions and photoelectrochemical properties of the samples in different stages were characterized by various technologies. Furthermore, methylene blue (MB), as the targeted organic pollutant, was used to study the enriching property and activity of the photocatalysts by the corresponding adsorption and degradation experiments. Research showed that the introduction of the DHFS microspheres could significantly enhance the adsorption ability of the photocatalyst for the existence of concentration gradient effect of the mesoporous and double-cavity structure, so that the DHFSBC-2 possessed the most superior activity under visible-light illumination (VLI) for the effective fabrication of heterojunction interfaces between BiOCl and CoP NPs. More importantly, this photocatalyst exhibited very strong photo-stability, and no decrease of the photocatalytic activity could be observed after being recycled for several times.

                                                                Applied Surface Science 491 (2019) 395–404