私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市未央區北大學城陜西科技大學
  • Zip:710021
  • Tel:029-86168315
  • Fax:
  • Email:liweihg@sust.edu.cn
Current Location :> Home > Publications > Text
A BiOCl/β‐FeOOH heterojunction for HER photocatalytic performance under visible‐light illumination
writer:W. Li, S. He, X. Wang, Q. Ma, C. Zhao
keywords:heterojunction, hydrogen generation, solid‐state doping, visible light, β‐FeOOH
source:期刊
specific source:https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4420
Issue time:2019年

β‐iron oxide hydroxide (β‐FeOOH) had been proven to be an effective co‐catalyst during H2 evolution reaction (HER) process. In this research, a BiOCl/β‐FeOOH heterojunction was successfully synthesized by a solid‐state doping method. Then, the structure, composition, and photo‐electrochemical properties of the prepared photocatalysts were studied. For the superior HER photocatalytic activity of ultrasmall β‐FeOOH nanoparticles (NPs) and the formation of the BiOCl/β‐FeOOH heterojunction, this heterojunction photocatalyst exhibited very superior photocatalytic performance in the HER process. Especially, when the amount of incorporated β‐FeOOH NPs was appropriate, the BFOH‐2 possessed the highest photocatalytic activity in HER process, and the HER rate was about 16.64 mmol·g-1·h-1 during illuminated time of 6 hours under visible light. When appropriate, ultrasmall β‐FeOOH NPs were implanted into the structure of BiOCl, the BiOCl/β‐FeOOH heterojunction interfaces would form for the existence of interfacial interactions. Therefore, this BiOCl/β‐FeOOH heterojunction exhibited superior visible‐light response, fast photo‐carrier migration, and high‐efficient separation of photo-carriers, so that the BFOH‐2 heterojunction possessed high‐efficient hydrogen evolution reaction (HER) photocatalytic activity.


                                                                           Int J Energy Res. 2019, 43: 2162–2171