私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市未央?yún)^(qū)北大學(xué)城陜西科技大學(xué)
  • Zip:710021
  • Tel:029-86168315
  • Fax:
  • Email:liweihg@sust.edu.cn
Current Location :> Home > Publications > Text
Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution
writer:W. Li, X. Wang, M. Li, S. He, Q. Ma, X. Wang
keywords:Three-dimensional porous structure, Heterostructure, Plasmon, Graphene oxide, Hydrogen evolution
source:期刊
specific source:https://doi.org/10.1016/j.apcatb.2019.118384
Issue time:2019年

Hydrogen is known as an alternative new energy for its advantages of non-pollution and high calorific value, and photocatalysis technology is regarded as one of the most effective means to produce hydrogen in recent years. In this topic, aiming at the poor photoresponse, fast combination of photo-induced carriers and unstable structure of traditional photocatalysts, the three-dimensional porous g-C3N4/graphene oxide framework was constructed by compounding two-dimensional graphene oxide and two-dimensional g-C3N4 via hard template (SiO2 nanoparticles) method and selective chemical etching. Then, silver bromide nanoparticles, a superior photosensitizer, were immobilized on the three-dimensional porous framework to construct the three-dimensional porous g-C3N4/graphene oxide-AgBr photocatalyst with Ag plasmas by solvothermal method. Research showed that this novel photocatalyst based on Z-scheme heterostructure (GO-AgBr), p-n heterostructure (g-C3N4-AgBr) and Ag plasmas presented high-efficient visible-light driven hydrogen evolution (3.69 mmol/g/h) at the absence of Pt co-catalyst, which is higher than the majority of existing catalysts, and it also possessed strong stability on its activity and structure. Accordingly, the enhanced hydrogen evolution and photostability were attributed to the highly ordered structure and fast interfacial electron conduction of three-dimensional porous framework, superior photosensitivity of AgBr and synergistic effect of Ag plasmas. Therefore, this study provided a potential method for exploitation of hydrogen energy.


                    Appl. Catal. B-Environ. https://doi.org/10.1016/j.apcatb.2019.118384