私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:長春市人民大街5625號
  • Zip:130022
  • Tel:0431-85262159
  • Fax:
  • Email:sfluan@ciac.ac.cn
Current Location :> Home > Publications > Text
【Nanoscale】Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption propertie
writer:Hengchong Shi, Dean Shi, Ligang Yin, Zhihua Yang, Shifang Luan*, Jiefeng Gao, Junwei Zha, et al.,
keywords:carbonaceous nanoparticles, foam, ultrasonication, oil-water separation
source:期刊
specific source:Nanoscale, 2014, 22, 13748-13753
Issue time:2014年

Abstract:

In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical durability even when it was subjected to 500 cyclic compression. The CNP-PU foam had excellent absorption of organic solvents up to 121 times the weight of the initial PU foam. In addition, the electrical conductivity of PU foams was considerably increased with the anchoring of CNP onto the matrix. In addition, compression experiments confirmed that the electrical conductivity of CNP-PU foams changed with their compression ratios, thus exhibiting excellent pressure sensitivity. The as-prepared materials have significant potential as oil absorbents, elastic conductors, flexible electrodes, pressure sensors, etc.