私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:長春市人民大街5625號
  • Zip:130022
  • Tel:0431-85262159
  • Fax:
  • Email:sfluan@ciac.ac.cn
Current Location :> Home > Publications > Text
【ACS Applied Materials & Interfaces】Nonleaching bacteria-responsive antibacterial surface based on a unique hierarchical architecture
writer:Shunjie Yan, Lingjie Song, Xianghong Wang, Lin Liu, Shifang Luan*, et al.,
keywords:cationic antimicrobial peptides, pH-responsive polymer, hierarchical architecture, bacteria-responsive, smart surfaces
source:期刊
specific source:ACS Applied Materials & Interfaces, 2016, 37, 24471-24481
Issue time:2016年

Abstract:

Bacteria-responsive surfaces popularly exert their smart antibacterial activities by bacteria-triggered delivery of antibacterial agents; however, the antibacterial agents should be additionally reloaded for the renewal of these surfaces. Herein, a reversible, nonleaching bacteria-responsive antibacterial surface is prepared by taking advantage of a hierarchical polymer brush architecture. In this hierarchical surface, a pH-responsive poly(methacrylic acid) (PMAA) outer layer serves as an actuator modulating the surface behavior on demand, while antimicrobial peptides (AMP) are covalently immobilized on the inner layer. The PMAA hydration layer renders the hierarchical surface resistant to initial bacterial attachment and biocompatible under physiological conditions. When bacteria colonize the surface, the bacteria-triggered acidification allows the outermost PMAA chains to collapse, therefore exposing the underlying bactericidal AMP to on-demand kill bacteria. In addition, the dead bacteria can be released once the PMAA chains resume their hydrophilicity because of the environmental pH increase. The functionality of the nonleaching surface is reversible without additional reloading of the antibacterial agents. This approach provides a new methodology for the development of smart surfaces in a variety of practical biomedical applications.