私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:山東省青島經濟技術開發區長江西路66 號
  • Zip:266580
  • Tel:0532-86983415
  • Fax:
  • Email:luxq@upc.edu.cn
Current Location :> Home > Publications > Text
Ethanol decomposition on a Pd(110) surface: a density functional theory investigation.
writer:W. Y. Guo, M. Li, X. Q. Lu,* H. Y. Zhu, Y. Li, S. R. Li, L. M. Zhao.
keywords:Ethanol decomposition,density functional theory
source:期刊
specific source:Dalton Trans.
Issue time:2013年
Ethanol decomposition on Pd(110) is comprehensively investigated using self-consistent periodic density functional theory. Geometries and energies for all the intermediates involved are analyzed, and the decomposition network is mapped out to illustrate the reaction mechanism. On Pd(110), the most stable adsorption of the involved species tends to follow the gas-phase bond order rules, wherein C is tetravalent and O is divalent with the missing H atoms replaced by metal atoms. The most likely decomposition pathway of ethanol on Pd(110) is CH(3)CH(2)OH → CH(3)CH(2)O → CH(3)CHO → CH(3)CO → CH(3) + CO → CO + H + CH(4) + C, in which the initial dehydrogenation is the rate-limited step. No C-O scission pathway is identified. Comparing with ethanol decomposition on Pd(111) [Langmuir, 2010, 26, 1879-1888], Pd(110) characterizes relatively high activity and different selectivity. Two crucial factors controlling the variations of reactivity and selectivity from Pd(111) to Pd(110), i.e., the local electronic effect of the metals and the geometrical effect of the relevant transition states, are identified. Four distinct Br?nsted-Evans-Polanyi (BEP) relations are identified for the three types of bond scission (C-H, C-O, and C-C) if we consider Pd(111) and Pd(110) as a whole, one for C-H bond scission, one for C-O bond scission, and two for C-C bond scission.