私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:廣西南寧市大學東路100號廣西大學輕工與食品工程學院
  • Zip:530004
  • Tel:0771-3237301
  • Fax:
  • Email:nieshuangxi@gxu.edu.cn
Current Location :> Home > News > Text
【22/09/13】2017級碩士生張宸源Chemical Engineering Journal:超疏水纖維素摩擦電材料

Abstract: The development of triboelectric nanogenerators (TENGs) has made it possible to

collect large-scale distributed energy, and their applications in the field of energy harvesting are promising. However, the erosion of water molecules in humid environments is a major challenge limiting the application of triboelectric materials. In this study, superhydrophobic methylated cellulosic triboelectric materials were prepared and rectangular TENG with an internal grid structure was designed for distributed energy harvesting. Interfacial modification of the cellulose nanofibrils (CNF) surface by silica nanoparticles to form a nanoscale microstructured surface further enhances the hydrophobicity of the triboelectric material. It was found that the modified CNF triboelectric material has excellent super-hydrophobicity (WCA: 154.7°), surface roughness (RMS: 72.61), and low surface energy. In addition, the RT-TENG internal grid structure is designed to allow external impact forces to be applied more uniformly to the surface of the f triboelectric material, demonstrating excellent electrical output performance (120 V) and cycling stability (10,000 cycles) when applied to distributed energy harvesting. This study provides a novel strategy for the design and preparation of superhydrophobic triboelectric materials and guides the study of distributed energy harvesting.