私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:武漢珞獅路122號
  • 郵編:430070
  • 電話:027-87651837
  • 傳真:
  • Email:msc@whut.edu.cn
當(dāng)前位置:> 首頁 > 最新動態(tài) > 正文
武漢理工大學(xué)木士春教授Angew: 五邊形碳環(huán)的氫析出反應(yīng)活性及其與Ru的p-d軌道雜化效應(yīng)研究

電催化科研社 2024年09月19日 07:31 北京

研究背景

在碳基材料中,拓?fù)淙毕菔遣豢杀苊獾拇嬖冢@些缺陷的固有電催化活性和機(jī)制尚未完全探索。綠色氫作為環(huán)保的零碳能源,在未來氫能系統(tǒng)中起著關(guān)鍵作用,主要通過使用可再生能源(如太陽能和風(fēng)能)進(jìn)行水電解來生產(chǎn)。然而,目前綠色氫的經(jīng)濟(jì)可行性低于灰氫等其他類型,且貴金屬催化劑(如Pt/CIrO?RuO?)在水電解中仍不可或缺。特別是,對于氫析出反應(yīng)(HER),昂貴的Pt仍然占據(jù)催化性能的頂峰。因此,研究如何使用更便宜的貴金屬(如Ru)并探索其催化機(jī)制,對于降低水電解成本具有重要意義。

工作內(nèi)容

通過密度泛函理論(DFT)計算,預(yù)測了富含五邊形環(huán)的碳(PRC)結(jié)構(gòu)中五邊形環(huán)的電化學(xué)反應(yīng)性。發(fā)現(xiàn)五邊形拓?fù)淙毕菽軌騼?yōu)化碳基體的電子性質(zhì),如降低帶隙能量、優(yōu)化p帶中心和提高電子再分布程度,從而調(diào)節(jié)關(guān)鍵中間體的吸附。通過堿刻蝕技術(shù)處理富勒烯材料(C60),形成富含五邊形環(huán)的碳納米材料(PRC)。使用濕化學(xué)法和熱還原法將Ru物種錨定在PRC上,形成Ru@PRC催化劑。利用光譜學(xué)和電子顯微鏡技術(shù),揭示Ru@PRC中五邊形缺陷的關(guān)鍵作用,以及C原子和Ru原子之間的p-d軌道雜化效應(yīng)。研究表明,C-p軌道和Ru-d軌道之間的強(qiáng)雜化調(diào)節(jié)了Ru@PRC結(jié)構(gòu)的電子狀態(tài),增強(qiáng)了其HER活性。測試了Ru@PRC催化劑在不同pH介質(zhì)中的HER活性,特別是在堿性條件下表現(xiàn)出優(yōu)異的性能。Ru@PRC在電流密度為10 mA cm?2時,過電位僅為28 mV,遠(yuǎn)低于Pt/C催化劑。

工作創(chuàng)新點

1.揭示了五邊形缺陷對HER的積極作用:首次通過實驗和理論相結(jié)合的方法,證明了五邊形缺陷可以作為HER的活性位點,顯著提高碳基材料的HER活性。

2.p-d軌道雜化效應(yīng):提出了C原子(五邊形環(huán)中)和Ru原子之間的p-d軌道雜化效應(yīng),這種效應(yīng)促進(jìn)了電子從Ru簇向五邊形環(huán)的快速轉(zhuǎn)移,減弱了Ru與氫中間體的結(jié)合強(qiáng)度,從而增強(qiáng)了HER活性。

3.高效催化劑的制備:成功制備了Ru@PRC催化劑,該催化劑在HER中表現(xiàn)出優(yōu)異的催化活性和穩(wěn)定性,特別是在堿性條件下,其性能顯著優(yōu)于商業(yè)Pt/C催化劑。

Figure 1. (a) Charge densities of PRC and HC. (b) Band gap and calculated p-band center of PRC and HC. (c) Geometric optimization results and binding energies of Ru@HC and Ru@PRC. (d) PDOS of C, Ru for Ru@PRC and Ru@HC. (e) ELF analyses of Ru@PRC. (f) Bader charge transfer on Ru@HC and Ru@PRC models. (g) HER Gibbs free energy diagrams of Ru@PRC, Ru@HC, PRC, HC and Ru models. (h) Water-dissociation pathways of Ru@PRC, Ru@HC, PRC, HC models. (i) d-band center analyses of Ru@HC, Ru and Ru@PRC.

Figure 2. (a) Schematic of the synthesis process for Ru@PRC. (b) TEM images of PRC. (c) Ac-STEM image of PRC. (d) Filtered image of PRC. (e) TEM image of Ru@PRC. (f) Ac-STEM image Ru@PRC. (g) Filtered image of Ru@PRC. (h-k) Elemental mapping of Ru@PRC.

Figure 3. (a) XRD patterns of Ru@PRC, Ru@HC, PRC and HC. (b) C 1s and (c) Ru 3p fitting results of Ru@HC and Ru@PRC. (d) Raman spectra and (e) EPR results of Ru@HC and Ru@PRC. (f) C K-edge NEXAFS spectra of Ru@PRC and Ru@HC. (g) EXAFS and (h) XANES spectra and (i-l) wavelet transform (WT-) analyses of RuO2, Ru foil, Ru@HC and Ru@PRC.

Figure 4. (a) Polarization curves (with iR-correction) of Ru@PRC, Ru@HC, PRC, HC and Pt/C catalysts in 1 M KOH solution. (b) Comparison of catalytic performance of Ru@PRC with other reported alkaline HER catalysts. (c) Mass activity and price activity at the overpotentials of 10 and 50 mV for Ru@PRC and Pt/C catalysts. (d) Stability test of Ru@PRC in alkaline media. (e) Polarization curves (with iR-correction) of Ru@PRC, Ru@HC, PRC, HC and Pt/C catalysts in 0.5 M H2SO4 solution. (f) Relevant Tafel slopes. (g) Cdl calculation of Ru@PRC, Ru@HC, PRC, HC, and Pt/C in acidic media. (h) Stability test of Ru@PRC in acidic media. (i) Polarization curves (with iR-correction) of Ru@PRC, Ru@HC, PRC, HC and Pt/C catalysts in 1 M PBS solution. (j) Relevant Tafel slopes. (k) Cdl calculation of Ru@PRC, Ru@HC, PRC, HC and Pt/C in neutral media. (l) Stability test of Ru@PRC in neutral media. (m) Polarization curves of overall water splitting performance of Ru@PRC || RuO2 couple and Pt/C || RuO2 couple in alkaline media. (n) Comparison of overall water splitting performance of Ru@PRC with other reported alkaline HER catalysts. (o) durability test of Ru@PRC || IrO2 and commercial Pt/C|| IrO2.

Figure 5. In situ Raman spectra of interfacial water on (a)HC, (b) PRC, (c) Ru@HC and (d) Ru@PRC in 1M KOH solutions (E versus RHE). (e) The population of KW from in situ Raman spectra. (f) Schematic showing interfacial water dissociation on Ru@PRC. (g) Contact angles of Ru@HC and Ru@PRC using the KOH electrolyte. 

原文信息

Lei Gong, Fanjie Xia, Jiawei Zhu, Xueqin Mu, Ding Chen, Hongyu Zhao, Lei Chen, Shichun Mu, Hydrogen Evolution Reactivity of Pentagonal Carbon Rings and p-d Orbital Hybridization Effect with Ru, Angew. Chem. Int. Ed. 2024, e202411125.

https://doi.org/10.1002/anie.202411125 

主站蜘蛛池模板: 尖扎县| 古丈县| 多伦县| 五台县| 彝良县| 江安县| 达日县| 弥勒县| 麻栗坡县| 循化| 邮箱| 静海县| 鄂托克旗| 磴口县| 芷江| 崇礼县| 门头沟区| 鸡西市| 怀远县| 阿拉善右旗| 丁青县| 三台县| 县级市| 米易县| 贵定县| 濮阳县| 双鸭山市| 天台县| 鹤岗市| 赤峰市| 丰台区| 化州市| 全椒县| 天津市| 四会市| 红桥区| 电白县| 阳曲县| 安阳县| 灵丘县| 定南县|