私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:浙江省杭州市文一西路1378號(hào)杭州師范大學(xué)科技園
  • Zip:311121
  • Tel:0571-28868905
  • Fax:0571-28868905
  • Email:hnutlc@163.com
Current Location :> Home > Publications > Text
Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles
writer:LC Tang*, YJ Wan, K Peng , YB Pei, LB Wu, LM Chen, LJ Shu, JX Jiang, GQ Lai
keywords:Polymer-matrix composites (PMCs), Nano-structures, Fracture toughness, Electrical properties
source:期刊
specific source:Composites: Part A
Issue time:2013年
The attainment of both high toughness and superior electrical conductivity of epoxy composites is a crucial requirement in some engineering applications. Herein, we developed a strategy to improve these performances of epoxy by combining the multi-wall carbon nanotubes (MWCNTs) and spherical particles. Two different types of spherical particles i.e. soft submicron-rubber and rigid nano-silica particles were chosen to modify the epoxy/MWCNT composites. Compared with the binary composites with singlephase particles, the ternary composites with MWCNTs and spherical particles offer a good balance in glass transition temperature, electrical conductivity, stiffness and strength, as well as fracture toughness, exhibiting capacities in tailoring the electrical and mechanical properties of epoxy composites. Based on the fracture surface analysis, the complicated interactions between multiscale particles and the relative toughening mechanisms were evaluated to explain the enhancement in fracture toughness of the ternary composites.