私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:浙江省杭州市文一西路1378號杭州師范大學科技園
  • Zip:311121
  • Tel:0571-28868905
  • Fax:0571-28868905
  • Email:hnutlc@163.com
Current Location :> Home > Publications > Text
Scalable preparation of multiscale carbon nanotube/glass fiber reinforcements and their application in polymer composites
writer:Ke Peng, Yan-Jun Wan, Dong-You Ren, Qing-Wen Zeng, and Long-Cheng Tang*
keywords:Glass fibers, Carbon nanotubes, Polymer-matrix composites (PMCs), Mechanical properties, Electron microscopy
source:期刊
specific source:Fibers and Polymers
Issue time:2014年
The introduction of carbon nanotubes (CNTs) into conventional fiber to construct a hierarchical structure in polymer composites has attracted great interest owing to their merits of performance improvement and multiple functionalities. However, there is a challenge for realizing the scalable preparation of the multi-scale CNT-glass fiber (CNT-GF) reinforcements in practical application. In this work, we present a simple and continuous method of the mass production of multiscale CNT-glass fiber (CNT-GF) reinforcements. Scanning electron microscopy and thermo gravimetric analysis indicated ~1.0 wt% CNTs were highly dispersed on the whole fiber surface through a facile surfactant-assisted process. Such hybrid CNT-GF fillers were found to effectively enhance the stiffness, strength and impact resistance of polypropylene polymer. Increased storage modulus, glass transition temperature and crystallization temperature of the composites filled with the CNT-GF fillers were also observed in the differential scanning calorimetry and dynamic mechanical analysis compared with the composites containing the pristine GF fillers. Fracture surface analysis revealed enhanced interfacial quality between CNT-GF and matrix, which is likely responsible for improved performance of the hierarchical polymer composites.