私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市長安區西北工業大學化學與化工學院
  • Zip:710129
  • Tel:13772401347
  • Fax:
  • Email:happytw_3000@163.com
Current Location :> Home > Publications > Text
[Nat.Commun.]A coopetition-driven strategy of parallel/ perpendicular aromatic stacking enabling metastable supramolecular polymerization
writer:Zhao Gao, Xuxu Xie, Juan Zhang, Wei Yuan, Hongxia Yan, Wei Tian*
keywords:Metastable supramolecular polymerization, Pathway complexity, Self-assembly
source:期刊
specific source:Nature Communications volume 15, Article number: 10762 (2024)
Issue time:2024年

Metastable supramolecular polymerization under kinetic control has recently been recognized as a closer way to biosystem than thermodynamic process.While impressive works on metastable supramolecular systems have been reported, the library of available non-covalent driving modes is still small and a simple yet versatile solution is highly desirable to design for easily regulating the energy landscapes of metastable aggregation. Herein, we propose a coopetition-driven metastability strategy for parallel/perpendicular aromatic stacking to construct metastable supramolecular polymers derived from a class of simple monomers consisting of lateral indoles and aromatic core. By subtly increasing the stacking strength of aromatic cores from phenyl to anthryl, the parallel face-to-face stacked aggregates are competitively formed as metastable products, which spontaneously transform into thermodynamically favorable species through the cooperativity of perpendicular edge-to-face stacking and parallel offset stacking. The slow kinetic-to-thermodynamic transformation could be accelerated by adding seeds for realizing the desired living supramolecular polymerization. Besides, this transformation of parallel/perpendicular aromatic stacking accompanied by time-dependent emission change from red to yellow is employed to dynamic cell imaging, largely avoiding the background interferences. The coopetition relationship of different aromatic stacking for metastable supramolecular systems is expected to serve as an effective strategy towards pathway-controlled functional materials.

論文鏈接:https://doi.org/10.1038/s41467-024-55106-z