私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市長(zhǎng)安區(qū)西北工業(yè)大學(xué)化學(xué)與化工學(xué)院
  • Zip:710129
  • Tel:13772401347
  • Fax:
  • Email:happytw_3000@163.com
Current Location :> Home > Publications > Text
[Polym. Chem.] How does a tiny terminal alkynyl end group drive fully hydrophilic homopolymers to self-assemble into multicompartment vesicles and flower-like complex particles?
writer:Tingting Liu, Wei Tian,* Yunqing Zhu, Yang Bai, Hongxia Yan and Jianzhong Du*
keywords:Homopolymers,self-assemble,terminal alkynyl
source:期刊
specific source:Polym. Chem., 2014, 5, 5077–5088
Issue time:2014年

It is a theoretical and technical challenge to construct well-defined nanostructures such as vesicles from fully hydrophilic homopolymers in pure water. In this paper, we incorporate one terminal alkynyl group into a fully hydrophilic linear or non-linear homopolymer to drive its unusual self-assembly in aqueous solution to form multicompartment vesicles, spherical compound micelles, flower-like complex particles, etc., which have been confirmed by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic/static light scattering (DLS/SLS) and drug encapsulation experiments. Particularly, a long chain hyperbranched structure with lots of terminal alkynyl groups induces the formation of vesicles. Also, the encapsulation experiment of doxorubicin hydrochloride was employed to further distinguish vesicular and micellar nanostructures. Additionally, the terminal alkynyl group-driven self-assembly has been applied to hydrophilic POEGMA475 homopolymers to afford similar nanostructures to PNIPAM homopolymers such as multicompartment vesicles and spherical compound micelles. Our study has opened up a new way to prepare hydrophilic homopolymer self-assemblies with tunable morphology.

全文鏈接:http://pubs.rsc.org/en/content/articlelanding/2014/py/c4py00501e#!divAbstract