私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:成都市金牛區二環路北一段111號
  • Zip:610031
  • Tel:028-87600415
  • Fax:
  • Email:wqyang@swjtu.edu.cn
Current Location :> Home > Publications > Text
Bidirectional Inhibiting Interfacial Ion Migration in the Inorganic Hole Transport Layer for Perovskite Light‐Emitting Diodes
writer:Lunyao Pan, Xiankan Zeng, Yuanxiao Qu, Maolin Mu, Shiyu Yang, Yongjian Chen,Chenglong Li, Linzhu Dai
keywords:Cu2ZnSnS4, inorganic hole transport layer, ion migration, perovskite light - emitting diodes
source:期刊
Issue time:2024年
Cu2ZnSnS4 (CZTS) is strong candidate for hole transport in perovskite light emitting diodes (PeLEDs) due to their cost-effectiveness, deep highest occupied molecular orbital (HOMO), and high hole mobility. However, its inherent polymetallic ions usually deteriorate the quality of the perovskite emission layer (EML) affecting device performance. In this study, a bidirectional anchoring strategy is proposed by adding 15-crown-5 ether (15C5) into CZTS hole transport layer (HTL) to suppress the reaction between HTL and EML. The 15C5 molecule interacts with Cu, Zn+2+ and Sn2+ cations forming host–guest complexes to impede their migration, which is elucidated by density functional theory calculations. Additionally, 15C5 can neutralize lead (Pb) defects by the abundant oxygen (O) and high electronegative cavities to reduce the nonradiative recombination of FAPbBr3 film. This bidirectional anchoring strategy effectively improves hole charge transport efficiency and suppresses nonradiative recombination at the HTL/EML interface. As a result, the optimized PeLEDs present a 3.5 times peak external quantum efficiency (EQE) from 3.12% to 11.08% and the maximum luminance (Lmax) increased from 24495 to 50584 cd m?2. These findings offer innovative insights into addressing the metal ion migration issue commonly observed in inorganic HTLs.