私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:湖南省婁底市婁星區氐星路487號
  • Zip:417000
  • Tel:0738-0000000
  • Fax:
  • Email:xiaowu759@huhst.edu.cn
Current Location :> Home > Publications > Text
003. Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin
writer:Chaofu Wu, Weijian Xu
keywords:Crosslinked epoxy resin; Atomistic molecular simulations; Glass transition temperature
source:期刊
specific source:Polymer 2007; 48(19): 5802-5812
Issue time:2007年

Many excellent thermal and mechanical performances of cured epoxy resin products can be related to their specific network structure. In this work, a typical crosslinked epoxy resin was investigated using detailed molecular dynamics (MD) simulations, in a wide temperature range from 250 K to 600 K. A general constant-NPT MD procedure widely used for linear polymers failed to identify the glass transition temperature (Tg) of this crosslinked polymer. This can be attributed to the bigger difference in the time scales and cooling rates between the experiments and simulations, and specially to the highly crosslinked infinite network feature. However, by adopting experimental densities appropriate for the corresponding temperatures, some important structural and dynamic features both below and above Tg were revealed using constant-NVT MD simulations. The polymer system exhibited more local structural features in case of below Tg than above Tg, as suggested by some typical radial distribution functions and torsion angle distributions. Non-bond energy, not any  otherenergy components in the used COMPASS forcefield, the most important role in glass transition. An abrupt change occurring in the vicinity of Tg was also observed in the plots of the mean squared displacements (MSDs) of the crosslinks against the temperature, indicating the great importance of crosslinks to glass transition. Rotational dynamics of some bonds in epoxy segments were also investigated, which exhibited great diversity along the chains between crosslinks. The reorientation functions of these bond vectors at higher temperatures can be well fitted by KohlrauscheWilliamseWatts (KWW) function.

http://dx.doi.org/10.1016/j.polymer.2007.07.019