私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:杭州市浙大路38號浙大玉泉校區(qū)第十教學(xué)大樓(石化大樓)4111室
  • Zip:310027
  • Tel:0571-87952631
  • Fax:0571-87951612
  • Email:wulinbo@zju.edu.cn
Current Location :> Home > Publications > Text
Solvent-Assisted Room-Temperature Compression Molding Approach to Fabricate Porous Scaffolds for Tissue Engineering
writer:Dianying Jing, Linbo Wu, Jiandong Ding*
keywords:fabrication,polyesters, porousscaffold,shrinkage, tissueengineering
source:期刊
specific source:Macromol. Biosci. 6(9), 747–757, 2006.7
Issue time:2006年

This study investigated the room-temperature compression molding/particle leaching approach to fabricate three-dimensional porous scaffolds for tissue engineering. Scaffolds with anatomical shapes (ear, joint, tube, cylinder) were made from biodegradable poly(D,L-lactide) and poly[(D,L-lactide)-co-glycolide]. The utility of this room-temperature compression approach comes from the effect of solvent assistance, but the tendency for post-molding scaffold shrinkage is a problem unique to this method and is thus examined with emphasis in this paper. Scaffold shrinkage was found to be tolerable under normal fabrication conditions
with high salt contents, which is just what the preparation of highly porous scaffolds requires. Furthermore, the resultant porosities after salt leaching were measured as well as the initial scaffold shrinkages after solvent evaporation, and
the relation between them was revealed by theoretical analysis and confirmed by comparison with experimental measurements. The pores were interconnected, and porosity can exceed 90%. The effects of porosity on the mechanical properties of porous scaffolds were also investigated. This convenient fabrication approach is a prospective method for the tailoring of porous scaffolds for a variety of possible applications in tissue engineering and tissue reconstruction.