私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:杭州市 浙江大學(xué)玉泉校區(qū)高分子大樓421房間
  • Zip:310027
  • Tel:0571-87953732
  • Fax:0571-87953732
  • Email:xhzhang@zju.edu.cn
Current Location :> Home > Publications > Text
Functional poly(carbonate-co-ether) synthesis from glycidyl methacrylate/CO2 copolymerization catalyzed by Zn–Co(III) double metal cyanide complex catalyst
writer:Ren-Jian Wei, Xing-Hong Zhang,* Ying-Ying Zhang, Bin-Yang Du, Zhi-Qiang Fan and Guo-Rong Qi
keywords:Glycidyl methacrylate, Carbon dioxide, Copolymerization
source:期刊
specific source:RSC Adv., 2014, 4, 3188–3194
Issue time:2013年
Polycarbonates with pendant functional groups have attracted much attention due to their capability for further chemical modification and post-polymerization. This work describes the synthesis of a poly(carbonate-co-ether) with massive pendant acrylate groups from the copolymerization of glycidyl methacrylate (GMA) with carbon dioxide (CO2), using a nanolamellar zinc-cobalt double metal cyanide complex (Zn–Co(III) DMCC) catalyst. The carbonate linkage content (FCO2) of the poly(carbonate-coether) could be varied from 42.2 to 68.0% by changing the polymerization conditions. Of importance, 4-methoxyphenol was applied for regulating the copolymerization. It could not only act as an inhibitor for completely depressing the self-polymerization of GMA via free radical polymerization of the double bond, but also modulate the molecular weight of the resultant copolymers. The obtained copolymer had two terminal hydroxyl groups, which were confirmed by the electrospray ionization-tandem mass spectrometry (ESI-MS) technique. A new thermoset with high glass transition temperature (Tg: 105 or 120 C) and massive carbonate units as well as hydroxyl (or carboxylic) groups was prepared by the curing reaction of the GMA–CO2 copolymer with allyl alcohol or acrylic acid in the presence of 2,2,-azobisisobutyronitrile (AIBN).