私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市長安南路199號 陜西師范大學 化學化工學院 079信箱
  • Zip:710062
  • Tel:029-81530828
  • Fax:
  • Email:yangpeng@snnu.edu.cn
Current Location :> Home > Publications > Text
[ACS Nano] Sn-Triggered Two-Dimensional Fast Protein Assembly with Emergent Functions
writer:Bassam Saif, Wenxin Zhang, Xu Zhang, Quan Gu*, Peng Yang*
keywords:metalloproteins, tin, amyloid-like assembly, hybrid nanofilm, biocatalytic scaffold
source:期刊
specific source:ACS Nano
Issue time:2019年
The discovery of a general strategy for organizing functional proteins into stable nanostructures with the desired dimension, shape, and function is an important focus in developing protein-based self-assembled materials, but the scalable synthesis of such materials and transfer to other substrates remain great challenges. We herein tackle this issue by creating a two-dimensional metal–protein hybrid nanofilm that is flexible and cost-effective with reliable self-recovery, stability, and multifunctionality. As it differs from traditional metal ions, we discover the capability of Sn2+ to initiate fast amyloid-like protein assembly (occurring in seconds) by effectively reducing the disulfide bonds of native globular proteins. The Sn2+-initiated lysozyme aggregation at the air/water interface leads to droplet flattening, a result never before reported in a protein system, which finally affords a multifunctional 2D Sn-doped hybrid lysozyme nanofilm with an ultralarge area (e.g., 0.2 m2) within a few minutes. The hybrid film is distinctive in its ease of coating on versatile material surfaces with endurable chemical and mechanical stability, optical transparency, and diverse end uses in antimicrobial and photo-/electrocatalytic scaffolds. Our approach provides not only insights into the effect of tin ions on macroscopic self-assembly of proteins but also a controllable and scalable synthesis of a potential biomimic framework for biomedical and biocatalytic applications.