私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市長安南路199號 陜西師范大學 化學化工學院 079信箱
  • Zip:710062
  • Tel:029-81530828
  • Fax:
  • Email:yangpeng@snnu.edu.cn
Current Location :> Home > Publications > Text
[Biomacromolecules] Photoactivation of Alkyl C-H and Silanization: A Simple and General Route to Prepare High-Density Primary Amines on Inert Polymer Surfaces for Protein Immobilization
writer:Gan SH, Yang P, Yang WT
keywords:MULTIPOINT COVALENT ATTACHMENT; GLUTARALDEHYDE CROSS-LINKING; ENZYME IMMOBILIZATION; ACTIVATED SUPPORTS; STABILIZATION; POLYETHYLENE; MONOLAYERS; SUBSTRATE; MECHANISM; FILM
source:期刊
specific source:Biomacromolecules
Issue time:2009年

Surface modification through implanting functional groups has been demonstrated to be extremely important to biomedical applications. The usage of organic polymer phase is often required to achieve satisfactory results. However, organic surfaces usually have poor chemical reactivity toward other reactants and target biomolecules because these surfaces usually only consist of simple alkyl (C-H) and/or alkyl ether (ROR'') structures. For the first time, we here report the potential to perform silanization techniques on alkyl polymer surface, which provide a simple, fast, inexpensive, and general method to decorate versatile functional groups at the molecular level. As an example, high-density primary amines could be obtained on a model polymer, polypropylene substrate, through the reaction between amine-capped silane, 3-aminopropyltriethoxysilane (APTES) and hydroxylated polypropylene surface. A model protein, immunoglobulin (IgG), could be effectively immobilized on the surface after transforming amines to aldehydes by the aldehyde-amine condensation reaction between glutaraldehyde (GA) and amines. The routes we report here could directly make use of the benefits from well-developed silane chemistry, and hereby are capable of grafting any functionalities on inert alkyl surfaces via changing the terminal groups in silanes, which should instantly stimulate the development of many realms such as microarrays, immunoassays, biosensors, filtrations, and microseparation.