私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市長安南路199號 陜西師范大學 化學化工學院 079信箱
  • Zip:710062
  • Tel:029-81530828
  • Fax:
  • Email:yangpeng@snnu.edu.cn
Current Location :> Home > Publications > Text
[Applied Catalysis A: General] N,N-Dimethylformamide solvothermal strategy: From fabrication of palladium nanoparticles supported on reduced graphene oxide nanosheets to their application in catalytic aminocarbonylation reactions
writer:Ying Zhang, Huaming Sun, Weiqiang Zhang, Ziwei Gao, Peng Yang, Jian Gu
keywords:Pd nanoparticles, Graphene, Aminocarbonylation reactions, Catalysis Solvothermal method
source:期刊
specific source:Applied Catalysis A: General
Issue time:2015年
A facile N,N-dimethylformamide (DMF) solvothermal strategy has been developed to fabricate palladium nanoparticles supported on reduced graphene oxide nanosheets (SRGO-Pd), which efficiently catalyze the aminocarbonylation of aryl halides. The palladium nanoparticles were uniformly anchored on the reduced graphene oxide nanosheets by a one-step DMF solvothermal approach. During the process, the palladium particles on the reduced graphene oxide nanosheets were tuned by the solvothermal temperature. DMF did not only play the role of the reductant for graphite oxide and Pd2+, but also restrained the aggregation of the graphene sheets and stabilized the palladium nanoparticles. Under DMF solvothermal conditions, SRGO-Pd catalysts demonstrated an excellent catalytic activity and good recyclability for the aminocarbonylation reaction of aryl halides without using carbon monoxide and any other additive. The SRGO-Pd catalyst could be recycled atleast eighttimes with sustained activity. Such a strategy represents a promising route for applications ranging from the fabrication of graphene-supported materials to the use as catalysts.