私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關鏈接
聯系方式
  • 通信地址:天津市衛津路94號
  • 郵編:300071
  • 電話:022-23500693
  • 傳真:
  • Email:yihuang@nankai.edu.cn
當前位置:> 首頁 > 最新動態 > 正文
ACS Nano雜志發表本課題組關于石墨烯-PDA驅動器的論文

http://pubs.acs.org/doi/abs/10.1021/nn3006812

Electromechanical Actuator with Controllable Motion, Fast Response-Rate and High-Frequency Resonance Based on Graphene and Polydiacetylene

Jiajie Liang, Lu Huang, Na Li, Yi Huang*, Yingpeng Wu, Shaoli Fang, Jiyoung Oh, Mikhail Kozlov, Yanfeng Ma, Feifei Li, Ray Baughman, Yongsheng Chen*

Key Laboratory of Functional Polymer Materials and Centre of Nanoscale Science and Technology Institute of Polymer Chemistry College of Chemistry Nankai University 300071, Tianjin (China)

Although widely investigated, novel electromechanical actuators with high overall actuation performance are still in urgent need for various practical and scientific applications, such as robots, prosthetic devices, sensor switches, and sonar projectors. In this work, combining the properties of unique environmental perturbations-actuated deformational isomerization of polydiacetylene (PDA) and the outstanding intrinsic features of graphene together for the first time, we design and fabricate an electromechanical bimorph actuator composed of a layer of PDA crystal and a layer of flexible graphene paper through a simple yet versatile solution approach. Under low applied direct current (dc), the graphene–PDA bimorph actuator with strong mechanical strength can generate large actuation motion (curvature is about 0.37 cm–1 under a current density of 0.74 A/mm2) and produce high actuation stress (more than 160 MPa/g under an applied dc of only 0.29 A/mm2). When applying alternating current (ac), this actuator can display reversible swing behavior with long cycle life under high frequencies even up to 200 Hz; significantly, while the frequency and the value of applied ac and the state of the actuators reach an appropriate value, the graphene–PDA actuator can produce a strong resonance and the swing amplitude will jump to a peak value. Moreover, this stable graphene–PDA actuator also demonstrates rapidly and partially reversible electrochromatic phenomenon when applying an ac. Two mechanisms—the dominant one, electric-induced deformation, and a secondary one, thermal-induced expansion of PDA—are proposed to contribute to these interesting actuation performances of the graphene–PDA actuators. On the basis of these results, a mini-robot with controllable direction of motion based on the graphene–PDA actuator is designed to illustrate the great potential of our discoveries for practical use. Combining the unique actuation mechanism and many outstanding properties of graphene and PDA, this novel kind of graphene–PDA actuator exhibits compelling advantages to traditional electromechanical actuation technology and may provide a new avenue for actuation applications.

主站蜘蛛池模板: 工布江达县| 安岳县| 萨迦县| 巫山县| 花莲县| 尉氏县| 永清县| 林口县| 公安县| 平山县| 阳山县| 教育| 清镇市| 鄂州市| 安泽县| 杭锦旗| 寻甸| 明光市| 灵寿县| 灵丘县| 凌云县| 临沧市| 涿州市| 古田县| 盐边县| 马龙县| 瑞丽市| 连山| 陇南市| 泰安市| 邹城市| 昔阳县| 邹城市| 进贤县| 昂仁县| 台中县| 乐山市| 德安县| 洛隆县| 土默特右旗| 阳城县|