私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:南京仙林大學(xué)城南師大化科院
  • Zip:210023
  • Tel:N
  • Fax:
  • Email:jyuan@njnu.edu.cn
Current Location :> Home > News > Text
祝賀李燕梅碩士生文章在Materials Science and Engineering C發(fā)表

Smart drug carriers are the current need of the hour in controlled drug delivery applications. In this work, pH and redox dual responsive keratin based drug-loaded nanoparticles (KDNPs) were fabricated through two-step strategies. Keratin nanoparticles were first prepared by desolvation method and chemical crosslinking, followed by electrostatic adsorbing doxorubicin (DOX) to afford drug loaded keratin nanoparticles (KDNPs). The size, size distribution, and morphology of the KDNPs were characterized with dynamic light scattering (DLS) and Scan electronic microscope (SEM). Drug delivery profiles showed that KDNPs exhibited pH and glutathione (GSH) dualresponsive characters. Under tumor tissue/cell microenvironments (more acidic and high GSH level), KDNPs tended to accumulate at the tumor region through a potential enhanced permeability and retention (EPR) effect and perform surface negative-to-positive charge conversion. Hemolysis assay indicated that KDNPs had good blood compatibility. Cellular uptake assay demonstrated that KDNPs could be internalized by A 549 cells through endocytosis. Intriguingly, KDNPs were capable of promoting nitric oxide (NO) release from endogenous donor of S-nitrosoglutathione in the presence of GSH. All of these results demonstrated that keratin based drug carriers had potential for drug/NO delivery and cancer therapy in clinical medicine.