私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市西北工業大學長安校區理學院446辦公室
  • Zip:710129
  • Tel:+86-029-88431675
  • Fax:029-88431675
  • Email:blzhang@nwpu.edu.cn
Current Location :> Home > Publications > Text
Ultrasonic-assisted preparation of amidoxime functionalized silica framework via oil-water emulsion method for selective uranium adsorption
writer:Mudasir Ahmad, Jiqi Wang, Zuoting Yang, Qiuyu Zhang, Baoliang Zhang
keywords:amidoxime functionalized SiO2, Uranium adsorption, Environmental remediation, Porous materials, Click reaction
source:期刊
specific source:Chemical Engineering Journal
Issue time:2020年

The demand for low-cost adsorbent and method for efficient adsorption of metal ions for environmental and energy applications is highly required. The novel amidoxime functionalized silica framework (SiO2-AO) is prepared through a step by step process including ultrasonic-assisted oil–water emulsion method, surface sulfhydrylation, click reaction and modification of amidoxime. The hexane/water emulsion system in the presence of hexadecyltrimethylammonium bromide (CTAB) gives a large specific surface area of the precursor (SiO2-OH) and final products. The spectroscopic characterization combined with kinetics and isothermal studies reveals that the interaction between U(VI) and SiO2-AO is usually through coordination complexation. The adsorption behavior of SiO2-AO for U(VI) adsorption is explored through various batch methods including the effect of U(VI) concentration, pH, contact time and adsorbent dosage. It is revealed 99.9 ± 0.5% U(VI) adsorption occurs at pH = 8, which is close to the pH of seawater. The highest U(VI) adsorption capacity obtained from the Langmuir adsorption model is 955.8 mg g?1 at room temperature. The high removal rate (above 85%) at low U(VI) initial concentration (3 μg L-1), excellent selectivity of U(VI) in presence of coexisting ions and high adsorption efficiency of regenerated adsorbent in sixth cycle refer SiO2-AO as a potential adsorbent for U(VI) adsorption in the practical field.