私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市西北工業大學長安校區理學院446辦公室
  • Zip:710129
  • Tel:+86-029-88431675
  • Fax:029-88431675
  • Email:blzhang@nwpu.edu.cn
Current Location :> Home > Publications > Text
Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater
writer:Mudasir Ahmad, Jianquan Ren, Yunfei Zhang, Hao Kou, Mehraj-ud-din Naik, Qiuyu Zhang,Baoliang Zhang
keywords:Chitosan functionalized microspheres, Alkali method, Uranium(VI), Seawater
source:期刊
specific source:Chemical Engineering Journal
Issue time:2021年

The seawater contains 4.5 billion tons of uranium(VI), which is quite enough to provide a continuous supply of infinite nuclear energy. However, it is a sudden need to develop adsorbents from abundant available source, easy collect property, large durability and high uranium(VI) adsorption capacity from seawater. In this work, a singlestep process was developed for the preparation of chitosan (Cs) functionalized tubular carbon nanocomposite microspheres (CsFTnCM) for efficient uranium(VI) adsorption from seawater. The application of newly synthesized adsorbent for uranium(VI) removal from seawater is explored. Thus prepared adsorbent (CsFTnCM2) is found to adsorb 99.5% uranium(VI) from seawater. The CsFTnCM2 (Cs/FTn,1:1) comprising NH2 and COOH content approximately 0.61 mmol/g and 0.23 mmol/g, respectively. This kind of adsorbent possessed a uranium (VI) loading capacity of 0.660 (mg/g) from seawater. The adsorption kinetics not only dependent on the physical structure of the adsorbent but depends on the proportion of FTn in the Cs-matrix. However, the kinetics of uranium(VI) adsorption was increased by increasing the content of FTn up to a certain limit. The adsorption efficiency of uranium(VI) was not affected by the presence of coexisted ions, whose concentration is 1000 times greater than uranium(VI) in seawater. The desorption of uranium(VI) from the seawater exposed adsorbents were investigated and the results showed the uranium(VI) strip from the adsorbents found to be efficiently using Na2CO3.