私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:天津市南開區衛津路94號南開大學化學樓南樓302室
  • Zip:300071
  • Tel:022-23507193
  • Fax:
  • Email:zhanghuiqi@nankai.edu.cn
Current Location :> Home > Publications > Text
Efficient preparation of chemically crosslinked recyclable photodeformable azobenzene polymer fibers with high processability and reconstruction ability via a facile post-crosslinking method
writer:Chen Guo, Jianfeng Gao, Shengkui Ma, Huiqi Zhang*
keywords:Chemically crosslinked, Recyclable, Photodeformable azobenzene polymers, Processability, Reconstruction, Post-crosslinking method
source:期刊
specific source:EUROPEAN POLYMER JOURNAL 2020, 139, 109998.
Issue time:2020年
Chemically crosslinked recyclable photodeformable azobenzene (azo) polymer actuators with good stability (toward organic solvents and higher temperatures) and high processability and reconstruction ability hold great promise in many applications, but their development remains a challenging task. Herein, we report on for the first time a facile and highly efficient post-crosslinking method for addressing this issue. It involves first the synthesis of side-chain polymers bearing N-hydroxysuccinimide (NHS) carboxylate-substituted azo mesogens, fabrication of uniaxially oriented fibers from these azo polymers by the simple melt spinning method, and their subsequent post-crosslinking with cystamine (a diamine containing a disulfide bond) under mild conditions. The resulting chemically crosslinked fibers not only showed rapid and reversible photoinduced bending and unbending at ambient temperature as well as high mechanical strength and good solvent/heating stability, but also could be easily recycled into processable azo polymers in the presence of a reducing agent that can cleave the disulfide bond into thiol groups (i.e., tributylphosphine). In particular, the occurrence of the post-crosslinking reaction only on the thin surface layers of the azo polymer fibers afforded recycled polymers with large amounts of NHS carboxylate-substituted azo mesogens (together with a small amount of oxygen/heating-sensitive thiolsubstituted ones) in the first several (at least 5) recycling processes, thus allowing highly efficient reconstruction of photodeformable fibers with excellent photomobile properties by applying melt spinning and post-cross-linking (by using cystamine) methods. The strategy presented here opens the new possibility to the facile and efficient development of various advanced chemically crosslinked recyclable photodriven actuators.