私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:天津市衛津路南開大學高分子化學研究所蒙民偉樓417
  • Zip:300071
  • Tel:022-23509794
  • Fax:
  • Email:wqzhang@nankai.edu.cn
Current Location :> Home > Publications > Text
Aqueous RAFT polymerization of N-isopropylacrylamide mediated with hydrophilic macro-RAFT agent: homogeneous or heterogeneous polymerization?
writer:Xiaohui Wang, Shentong Li, Yang Su, Fei Huo, and Wangqing Zhang*
keywords:Aqueous polymerization; block copolymers; macro-RAFT agent; stimuli-sensitive polymers; reversible addition fragmentation chain transfer (RAFT) polymerization.
source:期刊
specific source:Journal of Polymer Science Part A: Polymer Chemistry
Issue time:2013年

Aqueous RAFT polymerization of N-isopropylacrylamide (NIPAM) mediated with hydrophilic macro-RAFT agent is generally used to prepare poly(N-isopropylacrylamide) (PNIPAM)-based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro-RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well-defined poly(dimethylacrylamide)-b-poly(N-isopropylacrylamide)-b-poly(dimethylacrylamide) (PDMA-b-PNIPAM-b-PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two-stage ln([M]o/[M])-time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013

onlinelibrary.wiley.com/doi/10.1002/pola.26599/abstract