私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:吉林省長春市朝陽區前進大街5988
  • Zip:130012
  • Tel:00000000000
  • Fax:
  • Email:jiezhao@jlu.edu.cn
Current Location :> Home > Publications > Text
【2021年影響因子/JCR分區:6.707/Q1】《APPLIED SURFACE SCIENCE》Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid.
writer:Lingjie Song, Jie Zhao, Huawei Yang, Jing Jin, Xiaomeng Li, Paolo Stagnaro, Jinghua Yin*
keywords:Biocompatibility; 2-Acrylamido-2-methylpropane sulfonic acid (AMPS); UV-induced graft polymerization; Polypropylene non-woven fabric membrane
source:期刊
Issue time:2011年
This work described the graft polymerization of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), onto the surface of polypropylene non-woven (NWF PP) membrane by O 2 plasma pretreatment and UV-induced photografting method. The chemical structure and composition of the modified surfaces were analyzed by FTIR-ATR and XPS, respectively. The wettability was investigated by water contact angle and equilibrium water adsorption. And the biocompatibility of the modified NWF PP membranes was evaluated by protein adsorption and platelet adhesion. It was found that the graft density increased with prolonging UV irradiation time and increasing AMPS concentration; the water contact angles of the membranes decreased from 124° to 26° with the increasing grafting density of poly(AMPS) from 0 to 884.2 μg cm ?2 , while the equilibrium water adsorption raised from 5 wt% to 75 wt%; the protein absorption was effectively suppressed with the introduction of poly(AMPS) even at the low grafting density (132.4 μg cm ?2 ); the number of platelets adhering to the modified membrane was dramatically reduced when compared with that on its virgin surface. These results indicated that surface modification of NWF PP membrane with AMPS was a facile approach to construct biocompatible surface.