私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:北京市昌平區高教園南三街9號北京航空航天大學實驗七號樓409
  • Zip:102206
  • Tel:---
  • Fax:
  • Email:zhengym@buaa.edu.cn
Current Location :> Home > Publications > Text
A UV-Resistant Heterogeneous Wettability Patterned Surface
writer:Chunlei Gao, Lei Zhang, Yongping Hou, Yongmei Zheng*
keywords:Wettability pattern
source:期刊
Issue time:2023年

Preparing UV-resistant heterogeneous wettability patterns is critical for the practical application of surfaces with heterogeneous wettability. However, combining UV-resistant superhydrophobic and superhydrophilic materials on heterogeneous surfaces is challenging. Inspired by the structure of cell membranes, a UV-resistant heterogeneous wettability-patterned surface (UPS) is designed via laser ablation of the coating of multilayer structures. UV-resistant superhydrophobic silica patterns can be created in situ on surfaces covered with superhydrophilic TiO2 nanoparticles. The UV resistance time of the UPS with a TiO2-based surface is more than two orders of magnitude higher than that obtained with other surface molecular modification methods that require a mask. The cell-membrane-like structure of the UPS regulates the migration of internal siloxane chain segments in the hydrophilic and hydrophobic regions of the surface. The UPS enables efficient patterning of functional materials under UV irradiation, controlling the wetting behavior of liquids in open-air systems. Furthermore, its heterogeneous wettability remains stable even after 50 h of intense UV irradiation (365 nm, 500 mW cm?2). These UV-resistant heterogeneous wettability patterned surfaces will likely be applied in microfluidics, cell culture, energy conversion, and water collection in the future.


https://doi.org/10.1002/adma.202304080