私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:北京市昌平區(qū)高教園南三街9號北京航空航天大學實驗七號樓409
  • Zip:102206
  • Tel:---
  • Fax:
  • Email:zhengym@buaa.edu.cn
Current Location :> Home > Publications > Text
Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers
writer:Yuan Chen, Dan Li, Ting Wang, Y. Zheng*
keywords:Bioinspired
source:期刊
specific source:Sci. Rep. 2016, 6, 19978
Issue time:2016年

Smart water-collecting functions are naturally endowed on biological surfaces with unique wettable microstructures, e.g., beetle back with “alternate hydrophobic, hydrophilic micro-regions”, and spider silk with wet-rebuilt “spindle-knot, joint” structures. Enlightened by the creature features, design of bio-inspired surfaces becomes the active issue in need of human beings for fresh water resource. Recently, as observed from spider web in nature, the net of spider silk is usually set in different situations and slopes in air, thus spider silks can be placed in all kinds of orientations as capturing water. Here, we show the styles and orientations of hump-on-string to control the ability of water collection as bioinspired silks are fabricated successfully. As different strings, sizes (height, length, pitch) of humps can become the controlling on volumes of extreme water drops. It is related to the different solid/liquid contact regions resulting in the as-modulated wet adhesion due to orientations of humps-on-strings. The conversion of high-low adhesion can be achieved to rely on orientations for the effect of capturing water drops. These studies offer an insight into enhancement of water collection efficiency and are helpful to design smart materials for controlled water drop capture and release via conversions of highlow adhesion.

http://www.nature.com/articles/srep19978