私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:北京市昌平區(qū)高教園南三街9號北京航空航天大學(xué)實(shí)驗(yàn)七號樓409
  • 郵編:102206
  • 電話:---
  • 傳真:
  • Email:zhengym@buaa.edu.cn
當(dāng)前位置:> 首頁 > 個人簡介
個人簡介

鄭詠梅 (博士生導(dǎo)師, 長聘教授)


北京航空航天大學(xué),化學(xué)學(xué)院,仿生智能界面科學(xué)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室.


郵箱: zhengym@buaa.edu.cn


主頁: http://www.zhengyongmei.polymer.cn.



概述


從事仿生微納米梯度界面及其動態(tài)浸潤性研究,研究表面的憎水性、防覆冰性、防霜性、及集水特性、液滴傳輸特性的調(diào)控。相關(guān)研究在Nature,Adv. Mater., Angew. Chem. Int. Ed., ACS Nano, Adv. Funct. Mater., Small, Nano Energy, Chemical engineering Journal 等國內(nèi)外期刊發(fā)表了150余篇SCI論文,封面作14篇,其中論文獲得頂級期刊論文(Nature, Nature Materials and Science等)的引用,引用14214次以上,H因子52。出版了英文專著四部(“Bioinspired wettability surfaces: Development in micro- and nanostructures” in 2015;“Bioinspired Design of Materials Surfaces” in 2019;“Bioinspired Materials Surfaces” in 2024;“Controlled Surface Wetting: From Bioinspiration to Applications” in 2025),合作多部。擔(dān)任英國皇家化學(xué)學(xué)會會士(FRSC)、中國復(fù)合材料學(xué)理事會理事(CSCM),瑞典先進(jìn)材料學(xué)會會士(FIAAM)、美國化學(xué)學(xué)會會員(ACS),中國化學(xué)學(xué)會高級會員(CCS),國際仿生工程學(xué)會會員(ISBE)、英國NANOSMAT學(xué)會Fellow會員、Bentham科學(xué)出版社中方代表(Ambassador)。Scientific Report期刊編委會成員。2016年獲得仿生工程學(xué)會杰出貢獻(xiàn)最高獎。2016年獲得國際先進(jìn)材料協(xié)會獎牌。2020 年、2021 年、2023年, 2024年連續(xù)入選愛思唯爾中國高倍引學(xué)者。2022 年擔(dān)任專家“科學(xué)探索獎”提名人。2014年研究工作得到皇家化學(xué)會-化學(xué)世界新聞網(wǎng)站的亮點(diǎn)宣傳(https://www.chemistryworld.com/research/yongmei-zheng-spider-silk-and-butterfly-wings/7630.article)。個人主頁: http://www.zhengyongmei.polymer.cn.


教育經(jīng)歷:

  • 1983-1987年,吉林大學(xué)物理系,獲得學(xué)士學(xué)位
  • 1996-2000年,吉林工業(yè)大學(xué),應(yīng)用物理系,獲得碩士學(xué)位
  • 2000-2003年,吉林大學(xué)信息學(xué)院,獲得博士學(xué)位

研究經(jīng)歷:

  • 1987-1993,助教,吉林(工業(yè))大學(xué),應(yīng)用物理系
  • 1993-1999,講師,吉林(工業(yè))大學(xué),應(yīng)用物理系
  • 1999-2006,副教授,吉林大學(xué),物理教學(xué)與研究中心
  • 2003-2006,中國科學(xué)院化學(xué)研究所,博士后研究,合作導(dǎo)師江雷研究員
  • 2006-2008,副研究員,國家納米科學(xué)研究中心,納米生物醫(yī)學(xué)與生物技術(shù)研究室
  • 2008-2010,副教授,北京航空航天大學(xué),化學(xué)與環(huán)境學(xué)院
  • 2010-至今,教授,北京航空航天大學(xué)化學(xué)學(xué)院,仿生智能界面科學(xué)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室

社會兼職與服務(wù):

  • 國際期刊Scientific report編輯委員會成員
  • 國際期刊MDPI Biomimetics,Section of Bioinspired Materials and Interfaces 主編(Editor-in-Chief)
  • 客座編輯,曾組編???span style="font-family:;" roman","serif";font-size:9pt;"="" times="" new="">“Bioinspired Functional Materials” on Journal of Nanomaterials, in Hindawi Publishing Corporation
  • 國際期刊Nature, Nature Chemistry, Nature communication, ACS, RSC, Wiley, etc..等審稿人
  • 中國復(fù)合材料學(xué)會理事會理事 (CSCM)
  • 中國化學(xué)學(xué)會高級會員 (CCS)
  • 美國化學(xué)學(xué)會會員 (ACS)
  • 國際仿生工程學(xué)會會員 (ISBE)
  • 英國皇家化學(xué)學(xué)會會士(FRSC)
  • 瑞典先進(jìn)材料協(xié)會會士 (FIAAM)
  • 英國NANOSMAT學(xué)會Fellow會員

榮譽(yù):

  • 2016年獲得國際仿生工程學(xué)會(ISBE)在仿生研究上的突出貢獻(xiàn)獎
  • 2016年獲得國際先進(jìn)材料協(xié)會(IAAM)在先進(jìn)材料科學(xué)與技術(shù)上杰出貢獻(xiàn)獎牌
  • 2020 年入選愛思唯爾中國高倍引學(xué)者
  • 2021 年入選愛思唯爾中國高倍引學(xué)者
  • 2023 年入選愛思唯爾中國高倍引學(xué)者
  • 2024 年入選愛思唯爾中國高被引學(xué)者
  • 2022年入選歐洲自然科學(xué)院(Europaische Akademie der Natunwissenschaften)院士

研究興趣:

揭示生物表面微納米結(jié)構(gòu)效應(yīng)在浸潤性調(diào)控的機(jī)理。探究生物表界面梯度微納米結(jié)構(gòu)效應(yīng)引發(fā)的動態(tài)浸潤性調(diào)控的原理和普遍規(guī)律。研究基于荷葉效應(yīng)的仿生表面,及其表面的自清潔、極端憎水性;基于蝴蝶翅膀的仿生表面及其表面的定向液滴輸運(yùn)特性;基于蜘蛛絲表面重構(gòu)的微納米結(jié)構(gòu),及其表面的集水特性,液滴驅(qū)動特性等。探究新型的仿生界面的構(gòu)建技術(shù)與方法,設(shè)計(jì)和構(gòu)筑各種物理化學(xué)梯度,微納米結(jié)構(gòu),及功能協(xié)同的表面,用以調(diào)控界面的特殊浸潤性功能。開發(fā)微納米材料在表面的防覆冰、防霧、低溫憎水性、流體可控傳輸、集水特性等工程方面的研究。


主持課題:

  • 2023-2026年國家自然科學(xué)基金面上項(xiàng)目:新型光熱仿生多級次結(jié)構(gòu)的設(shè)計(jì)與低濕度集水性能的研究
  • 2017-2020年國家自然科學(xué)基金面上項(xiàng)目:仿生納微斜角結(jié)構(gòu)陣列的動態(tài)浸潤低粘滯特性調(diào)控
  • 2015-2018年國家自然科學(xué)基金面上項(xiàng)目:仿生多結(jié)構(gòu)表面的低溫憎水/防覆冰動態(tài)調(diào)控
  • 2013-2017年國家自然科學(xué)基金重點(diǎn)項(xiàng)目:仿生多微納米梯度界面的液滴動態(tài)傳輸聚集調(diào)控
  • 2013-2017年國家重大科技973計(jì)劃項(xiàng)目課題:仿生流體可控輸運(yùn)微/納界面材料的設(shè)計(jì)原理
  • 2013-2015年高等學(xué)校專項(xiàng)博士點(diǎn)基金:仿生多梯度結(jié)構(gòu)協(xié)同的微尺度液滴傳輸調(diào)控
  • 2010-2012年國家自然科學(xué)基金面上項(xiàng)目:基于仿生各向異性結(jié)構(gòu)的表面及其覆冰定向脫離調(diào)控

研究成績:


開展生物及仿生界面材料的研究,以典型的生物及仿生界面的特殊浸潤性為主線,系統(tǒng)地揭示了生物/仿生微納米結(jié)構(gòu)表面的智能化浸潤性的機(jī)理,探索仿生材料制備的物理、化學(xué)及納米技術(shù)等交叉的技術(shù)和方法,開展了仿生材料的可控制備、及其仿生材料的各向異性液滴方向運(yùn)動調(diào)控,多梯度協(xié)同的水凝結(jié)液滴的驅(qū)動,微納米結(jié)構(gòu)防覆冰功能性研究。揭示材料表面的微納米結(jié)構(gòu)效應(yīng)、各向異性效應(yīng)對表面浸潤性的調(diào)控機(jī)制。相關(guān)研究已獲得突破性成果,并于2010年以第一作者身份在國際頂級期刊《自然》發(fā)表學(xué)術(shù)論文封面作1篇,研究論文中提出了微納米結(jié)構(gòu)效應(yīng)及其多梯度協(xié)同效應(yīng)概念,為隨后的仿生設(shè)計(jì)及材料研究奠定了基礎(chǔ)。在開展的系列的仿生材料的研究中,并先后以第一作者或通訊作者或共同通訊作者身份在國際高影響力期刊《先進(jìn)材料》、《先進(jìn)功能材料》等發(fā)表了高水平的學(xué)術(shù)論文。相關(guān)研究在仿生材料制備新技術(shù)與方法,自然現(xiàn)象機(jī)理揭示,物理化學(xué)模型建立等方面均具有原創(chuàng)性。研究工作得到《自然》期刊、英國皇家化學(xué)會的特征宣傳,及相關(guān)領(lǐng)域?qū)W術(shù)專家們較高關(guān)注。其中有三篇論文被國際頂級期刊《自然》《科學(xué)》以及其自然子刊的引用數(shù)次。積極開展學(xué)術(shù)合作,構(gòu)成了具有結(jié)構(gòu)合理的的合作研究學(xué)術(shù)梯隊(duì),至今為止,率領(lǐng)研究團(tuán)隊(duì),在化學(xué)領(lǐng)域以及納米材料領(lǐng)域,主持國家自然科學(xué)基金重點(diǎn)項(xiàng)目題為“仿生微納米梯度界面液滴動態(tài)傳輸聚集調(diào)控”;以及科技部973項(xiàng)目課題為“仿生流體可控輸運(yùn)界面材料的設(shè)計(jì)原理”等。圍繞項(xiàng)目而展開的合作研究成員有教授1人(博士生導(dǎo)師)、副教授4人(均博士學(xué)位,碩士生導(dǎo)師)、講師5人(均博士學(xué)位,碩士生導(dǎo)師)。培養(yǎng)青年人、研究博士生、碩士生累計(jì)50余人。


將生物表面的梯度特征和梯度協(xié)同概念引入仿生界面材料功能體系研究之中,是近幾年貫徹的研究理念,已形成化學(xué)學(xué)科、化學(xué)與物理領(lǐng)域中有特色的研究方向。其對微流控制、熱轉(zhuǎn)換器件、水收集、防覆冰等領(lǐng)域?qū)嶋H問題的解決有重要的科學(xué)價(jià)值和實(shí)際意義。通過利用聚合物材料,運(yùn)用化學(xué)、物理、材料及生物表面多學(xué)科技術(shù)和方法。從自然現(xiàn)象中汲取靈感,探究生物梯度表界面的智能化浸潤性,揭示其機(jī)理。設(shè)計(jì)并制備系列仿生功能的界面材料,實(shí)施仿生梯度表面智能化、功能性動態(tài)流體輸運(yùn)調(diào)控材料體系的研究:


(一)一維材料界面梯度體系設(shè)計(jì)與新功能研究


1.生物表面多梯度協(xié)同效應(yīng)的揭示


揭示了篩器類蜘蛛(Uloborus Walckenaerius)的捕捉絲的方向集水效應(yīng),針對微小尺度液滴驅(qū)動的關(guān)鍵問題,提出了“多協(xié)同效應(yīng)”思想。以第一完成人在國際頂級學(xué)術(shù)期刊《自然》上發(fā)表論文1篇(Nature 2010,463, 640),并做封面突出報(bào)道。該工作突破了小尺度液滴驅(qū)動上的瓶頸問題。提出表面能梯度或者拉普拉斯壓差協(xié)同是驅(qū)動幾百微米以下尺度的液滴的最佳途徑。該研究成果得到《自然》新聞網(wǎng)以題為“Dew Catchers”,英國廣播公司BBC新聞網(wǎng)以題“How spider webs catch water drops”,皇家化學(xué)科學(xué)學(xué)會RSC以題“How spider silk soaks up water“等的廣泛宣傳,其中世界專家們Fritz Vollrath (英國牛津大學(xué)),Brent Opell(美國維吉尼亞技術(shù)院),Randolph Lewis (美國懷俄明州大學(xué)),Jose Perez-Rigueiro (西班牙馬德里科技大學(xué))的極大關(guān)注和高度評價(jià),指出其研究為新材料的設(shè)計(jì)和材料的應(yīng)用提供思路。該研究論文在期刊Nat. Mater.、Nat. Commun.等引用。至今他引百余次。


2.仿生梯度協(xié)同界面的懸滴特性調(diào)控


提出了提拉涂層瑞利不穩(wěn)定技術(shù),并運(yùn)用聚甲基丙烯酸甲酯PMMA/N,N-二甲基甲酰胺DMF溶液,設(shè)計(jì)并可控制備了仿生類蜘蛛絲紡錘節(jié)梯度結(jié)構(gòu)纖維。通過優(yōu)化控制實(shí)驗(yàn)條件參數(shù),獲得了不同尺寸紡錘節(jié)梯度纖維。通過研究不同梯度纖維懸掛水滴的臨界尺度,揭示了穩(wěn)定懸滴的固液氣三相界面的“曲率梯度”效應(yīng)機(jī)制(Adv. Mater.2011,23,3708,封面突出報(bào)道)。其工作與Small 2011,7,3429和Adv. Mater. 2011,23, 5486同時被皇家化學(xué)會以題為“Water-catching spinout from synthetic spider silk”特征宣傳。


3.仿生梯度協(xié)同的液滴方向性運(yùn)動調(diào)控


通過涂層的瑞利不穩(wěn)定技術(shù),運(yùn)用聚合物有機(jī)物(如聚甲基丙烯酸甲酯PMMA、聚偏二氟乙烯PVDF、聚苯乙烯PS等)的N,N-二甲基甲酰胺DMF溶液,可控制備了不同親/疏化學(xué)組分、不同粗糙程度的類蜘蛛絲紡錘節(jié)梯度結(jié)構(gòu)纖維。從而實(shí)現(xiàn)了不同粗糙紡錘節(jié)梯度纖維對微小液滴驅(qū)動方向性的調(diào)控,揭示了纖維表面的表面能量、拉普拉斯壓差和表面粗糙梯度等多梯度協(xié)同的驅(qū)動特性基本規(guī)律(Adv.Mater.2010,22,5521,封面突出報(bào)道),并被英國《自然》期刊以題“Controlling water on synthetic silk”、亞洲材料研究學(xué)會以題“Bioinspired polymers: Driving droplets”特別宣傳。此外,進(jìn)一步研究了溫度響應(yīng)浸潤性仿生類蜘蛛絲纖維,調(diào)控了微尺度液滴的方向性驅(qū)動,進(jìn)一步證實(shí)了多梯度協(xié)同效應(yīng)對液滴方向傳輸調(diào)控的適用性,其研究成果發(fā)表在Chem. Commun. 2013, 49, 5253. (背封面報(bào)道)


4.仿生梯度纖維的水聚集特性調(diào)控


通過涂層的瑞利不穩(wěn)定技術(shù),運(yùn)用聚合物有機(jī)物聚甲基丙烯酸甲酯PMMA/N,N-二甲基甲酰胺DMF溶液,可控制備了不同尺度系列紡錘節(jié)梯度結(jié)構(gòu)纖維。實(shí)現(xiàn)了不同梯度結(jié)構(gòu),及不同霧流條件下的水聚集特性調(diào)控。為水收集纖維材料的設(shè)計(jì)和研究提供了基礎(chǔ)(Adv.Mater.2011,23,5486,封面突出報(bào)道)。其工作與Small 2011,7,3429和Adv. Mater. 2011,23, 3708同時被皇家化學(xué)會的特征宣傳。


5.可控連續(xù)制備的仿生梯度纖維研究


運(yùn)用流體抽拉涂層瑞利不穩(wěn)定技術(shù),制備了大面積仿生絲集水纖維(Small2011,7,3429)。提供了一種連續(xù)快速可控制備仿生結(jié)構(gòu)纖維的新方法,內(nèi)插頁突出報(bào)道)。該研究方法可以獲得任意長度纖維的制備,為纖維規(guī)?;a(chǎn)提供模型,其工作與Adv. Mater. 2011,23, 3708和Adv. Mater.2011,23,3708同時得到皇家化學(xué)會RSC題為“Water-catching spinout from synthetic spider silk”的特征宣傳。


6.微尺度異質(zhì)纖維的制備與微觀水聚集性的調(diào)控


運(yùn)用共軸靜電紡絲技術(shù)(Adv. Funct. Mater.2011,21,1398,背封面突出報(bào)道),并設(shè)計(jì)內(nèi)外流體表面張力差,有效地調(diào)控了外流體的周期曲率界面的形成,可控制備出了異質(zhì)的親/疏水交替的仿生絲纖維。實(shí)現(xiàn)了異質(zhì)梯度纖維的微觀水聚集性調(diào)控。


此外,針對篩器蜘蛛捕捉絲的懸滴能力,揭示了微納米結(jié)構(gòu)粗糙曲率的特征引發(fā)超強(qiáng)毛細(xì)粘滯力的機(jī)制,建立了微納米粗糙曲率的粘滯力學(xué)模型(Soft Matter2011,7,9468)。


系統(tǒng)地開展了多級紡錘節(jié)梯度結(jié)構(gòu)纖維的設(shè)計(jì)、可控制備,以及水聚集特性與能力的研究,獲得了系列的結(jié)果 (J. Mater. Chem. A2013, 1, 8363;Soft Matter2011,7,9468;2012,8,11236;2012,8,11450;Langmuir2012,28,4737)。


(二)二維界面梯度材料體系與新功能研究


7.微納米結(jié)構(gòu)表面的疏冰性調(diào)控


通過運(yùn)用微加工技術(shù)和納米晶體生長技術(shù),構(gòu)建了類蝴蝶翅膀的仿生鋸齒微納米結(jié)構(gòu)的超疏水表面(Adv. Mater.2012,24, 2642),并將其表面與微米結(jié)構(gòu)表面、納米結(jié)構(gòu)表面對比原位觀察,發(fā)現(xiàn)所制備的微納米結(jié)構(gòu)的表面具有較長時間(~7200秒)的防結(jié)冰延時性。其證實(shí)了微納米結(jié)構(gòu)協(xié)同效應(yīng)的表面具有優(yōu)越的防覆冰特性。其研究為設(shè)計(jì)新型防覆冰表面提供理論基礎(chǔ)。


8.生物表面液滴方向性脫離機(jī)制的揭示


揭示了蝴蝶(Morpho aega)翅膀的方向性斥水特性的機(jī)理(Soft Matter2007,3,178)。從微納米層次上,提出同一表面上形成了方向依賴的兩種高/低粘滯的超疏水狀態(tài)共存機(jī)制。該研究論文被國際頂級高影響力期刊Science、Nat. Mater.、Nat. Commun.等引用。至今他引136次。


9.生物表面梯度鋸齒陣列疏水效應(yīng)的揭示


揭示了黑麥草葉(ryegrass leaf)的各向異性錐狀鋸齒陣列結(jié)構(gòu)及其各向異性浸潤性機(jī)制(Soft Matter2011,8,1770)。同時利用聚偏氟乙烯PVDF成功制備了類黑麥草葉表面微納米結(jié)構(gòu)的仿生表面,并實(shí)現(xiàn)了微尺度液滴的選擇的方向性脫離特性。


10.生物表面多取向結(jié)構(gòu)的低溫超疏水性機(jī)理


發(fā)現(xiàn)了蝴蝶(Morpho nestira)翅膀的微納米結(jié)構(gòu)具有超強(qiáng)的低溫防霧特性,揭示了蝴蝶翅膀的低溫憎水特性及其機(jī)制(Soft Matter2011,7,10569)。指明了蝴蝶翅膀上的多級取向結(jié)構(gòu),是導(dǎo)致翅膀表面在低溫條件下對液滴產(chǎn)生方向性脫離的根本原因。其為設(shè)計(jì)防覆冰表面提供思路。


開展了對荷葉表面梯度特征的揭示(Appl.Phys.Lett.2008,92,084106; \Soft Matter, 2008,4, 2232;),以及仿生表面動態(tài)浸潤性的研究(Appl.Phys.Lett. 2008,93,094107;Appl.Phys.Lett.2009,94,144104;被Nat. Mater.引用)等。


綜上所述,開展了系統(tǒng)創(chuàng)新性研究工作。在國際頂級的高影響力期刊發(fā)表論文:Nature;Adv. Mater.;Adv. Funct. Mater.;Small;Chem. Commun.;Langmuir,Soft Matter, Appl. Phys. Lett.等,封面\內(nèi)封面\背封面\內(nèi)插頁突出報(bào)道等8篇。研究論文得到了自然期刊、皇家化學(xué)學(xué)會及專家們在仿生結(jié)構(gòu)材料制備以及浸潤功能性研究上給予了肯定。論文被國際期刊如Nature、Nat. Mater.、Nat. Commun.、Science等引用。上述研究成果將給新型功能材料設(shè)計(jì)提供參考。

封面報(bào)道:


出版專著:



  • Controlled Surface Wetting:From Bioinspiration to Applications. Y. Zheng*.  Wiley‐VCH GmbH。 (Print ISBN:9783527352890 |Online ISBN:9783527844326). March 7,2025. 1-301.
  • Bioinsipred Materials Surfaces. Y. Zheng*. Jenny Stanford Publishing. (ISBN: 9781003513889). Agust 9, 2024.  1-422.
  • Bioinspired Design of Materials Surfaces. Y. Zheng*. Elsevier. (ISBN 9780128148433). August 9, 2019, 1-338.
  • Bio-inspired Wettability Surfaces: Developments in Micro- and Nanostructures. Y. Zheng*. Pan Stanford Publishing. (ISBN 9789814463607/9789814463614. June 16, 2015, 1-216.
  • (Chapter), Biological Surface: Lotus Leaves and Butterfly Wings, Self-cleaning coating-Structure, Fabrication and Application in RSC smart materials. C. Song, Y. Zheng*. 2016.




發(fā)表論文 (years from 2007 to 2023):


  • 1. Robust Photothermal Icephobic Surface with Mechanical Durability of Multi-bioinspired Structures. M. Zhou, L. Zhang, L. Zhong, M. Chen, L. Zhu, T. Zhang, X.g Han, Y. Hou, and Y. Zheng*. Adv. Mater. 2023,230532. https://doi.org/10.1002/adma.202305322.
  • 2. Highly Efficient Photothermal Icephobic/de-Icing MOF-Based Micro and Nanostructured Surface. L. Zhang, B. Luo, K. Fu, C. Gao, X. Han, M. Zhou, T. Zhang, L. Zhong, Y. Hou, and Y. Zheng*. Adv. Sci. 2023, 2304187.
  • 3. A UV-Resistant Heterogeneous Wettability-Patterned Surface. C. Gao, L. Zhang, Y. Hou, and Y. Zheng*. Adv. Mater. 2023, 2304080.
  • 4. Bioinspired Robust Helical-Groove Spindle-Knot Microfibers for Large-Scale Water Collection. S. Wang, L. Zhu, D. Yu, X. Han, L. Zhong, Y. Hou, and Y. Zheng*. Adv. Funct. Mater. 2023, 2305244.
  • 5. Efficient Atmospheric Water Harvesting of Superhydrophilic Photothermic Nanocapsule. X. Han, L. Zhong, L. Zhang, L. Zhu, M. Zhou, S. Wang, D. Yu, H. Chen, Y. Hou, and Y. Zheng*. Small 2023, 2303358.
  • 6. Special fog harvesting mode on bioinspired hydrophilic dual-thread spider silk fiber. J. Huan, M. Chen, Y. Hou* , Y. Zheng *. Chemical Engineering Journal 473 (2023) 145174.
  • 7. Integrative Bioinspired Surface with Annular Pattern and Three Dimension Wettable Gradient for Enhancement of Fog Collection. X. Geng, Y. Xing, J. Huan, Y. Hou,* and Y. Zheng*. Adv. Mater. Interfaces 2023, 10, 2201978.
  • 8. Liquid Confine-Induced Gradient-Janus Wires for Droplet Self-Propelling Performances in High Efficiency. L. Zhong, H. Chen, L. Zhu, M. Zhou, L. Zhang, S. Wang,. X. Han, Y. Hou, and Y. Zheng*. Adv. Funct. Mater. 2022, 2208117.
  • 9. Robust photothermal superhydrophobic coatings with dual-size micro/nano structure enhance anti-/de-icing and chemical resistance properties. L. Zhang, C. Gao, L. Zhong, L. Zhu, H. Chen, Y. Hou, Y. Zheng*, Chemical Engineering Journal 446 (2022) 137461.
  • 10. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation. L. Zhu , J. Li, L. Zhong, L. Zhang, M. Zhou, H. Chen, Y. Hou, Y. Zheng*, Nano Energy 100 (2022) 107441.
  • 11. High efficient fog-water harvesting via spontaneous swallowing mechanism. Y. Liu, H. Zhai, X. Li, N. Yang, Z. Guo, L. Zhu, C. Gao, Y. Hou, Y. Zheng*. Nano Energy 96 (2022) 107076.
  • 12. Underwater Fast Bubble Generating on Pitaya Thorn and Enhanced Biomimetic Gas Collection. L. Zhong, H. Chen, L. Zhu, L. Zhang, S. Wang, Y. Hou, and Y. Zheng*, Adv. Mater. Interfaces 2022, 2200274.
  • 13. Electromigration-triggered programmable droplet spreading. S. Feng, Q. Wang, Y. Xing, Y. He, X. Geng, Y. Hou,* Y. Zheng*. Chemical Engineering Journal 423 (2021) 130281.
  • 14. Recent advances in biomimetic fog harvesting: focusing on higher efficiency and large-scale fabrication. L. Zhong, L. Zhu, J. Li, W. Pei, H. Chen, S. Wang, Aamir Razaa, Assad Khan, Y. Hou* and Y. Zheng*. Mol. Syst. Des. Eng. 6 (2021), 986.
  • 15. Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel. Q. Wang, Y. He, X. Geng, Y. Hou,* and Y. Zheng*. ACS Appl. Mater. Interfaces 13 (2021) 48292.
  • 16. Excellent fog harvesting performance of liquid-infused nano-textured 3D frame. W. Pei, J. Li, Z. Guo, Y. Liu, C. Gao, L. Zhong, S. Wang, Y. Hou, Y. Zheng *. Chemical Engineering Journal 409 (2021) 128180.
  • 17. Elastic Microstaggered Porous Superhydrophilic Framework as a Robust Fogwater Harvester. J. Li, C. Gao, W. Pei, Z. Guo, L. Zhong, Y. Liu, S. Wang, Y. Hou,* and Y. Zheng*. ACS Applied Mater Interfaces. 2020, 12(42), 48049-48056.
  • 18. Bioinspired Nanofibrils-Humped Fibers with Strong Capillary Channels for Fog Capture. Y. Liu, N. Yang, C. Gao, X. Li, Z. Guo, Y. Hou,* and Y. Zheng*. ACS Applied Mater Interfaces. 2020, 12(25), 28876-28884.
  • 19. Fog Collection on a Bio-inspired Topological Alloy Net with Micro-/Nanostructures. J. Li, C. Gao, W. Pei, Z. Guo, L. Zhong, Y. Liu, S. Wang, Y. Hou,* and Y. Zheng*. ACS Applied Mater Interfaces. 2020, 12(4), 5065-5072.
  • 20. Water Harvesting of Bioinspired Microfibers with Rough Spindle-knots from Microfluidics. Y. Liu, N. Yang, X. Li, J. Li, W. Pei, Y. Xu, Y. Hou,* and Y. Zheng*. Small 2020, 16(9), 1901819.
  • 21. Droplet Manipulation: Magically Cut Apart Microdroplet by Smart Nanofibrils Wire. M. Zhang, J. Li, W. Pei, Y. Liu, L. Zhong, S. Wang, and Y. Zheng*. Adv. Mater Interfaces. 2020, 7(10), 2000161.
  • 22. Continuous Directional Water Transport on Integrating Tapered Surfaces. S. Feng, Q. Wang, Y. Xing, Y. Hou,* and Y. Zheng*. Adv Mater Interfaces. 2020 7(9), 2000081.
  • 23. Droplet Self-Propeling Control on Bioinspired Fiber in Low Temperature and High Humidity Environment. Y. Hou,* Y. Xing, S. Feng, C. Gao, H. Zhou, and Y. Zheng*. Adv Mater Interfaces. 2020, 7(2),1901183.
  • 24. Extremely Ice-Detached Array of Pine Needle-Inspired Concave-Cone Pillars. Z. Guo, B. Peng, Y. Liu, J. Li, W. Pei, Q. Li,* and Y. Zheng*. Adv Mater Interfaces. 2020, 7(2), 1901714.
  • 25. Fog Harvesting of a Bioinspired Nanocone-Decorated 3D Fiber Network. C. Li, Y. Liu, C. Gao, X. Li, Y. Xing, and Y. Zheng*. ACS Appl. Mater. Interfaces 2019, 11, 4507?4513.
  • 26. Integrative Bioinspired Surface with Wettable Patterns and Gradient for Enhancement of Fog Collection. Y. Xing, W. Shang, Q. Wang, S. Feng, Y. Hou,* and Y. Zheng*. ACS Appl. Mater. Interfaces 2019, 11, 10951?10958.
  • 27. Anti-icing Properties of Bioinspired Liquid-Infused Double-Layer Surface with Internal Wetting Transport Ability. Z. Guo, C. Gao, J. Li, Y. Liu, and Y. Zheng*. Adv. Mater. Interfaces 2019, 1900244.
  • 28. Droplets Manipulated on Photothermal Organogel Surfaces. C. Gao, L. Wang, Y. Lin, J. Li, Y. Liu, X. Li, S. Feng, Y. Zheng*. Adv. Funct. Mater. 2018, 1803072.
  • 29. Magnetically Induced Low Adhesive Direction of Nano/ Micropillar Arrays for Microdroplet Transport. Y. Lin, Z. Hu, M. Zhang, T. Xu, S. Feng, L. Jiang, Y. Zheng*. Adv. Funct. Mater. 2018, 1800163.
  • 30. Excellent Fog-Droplets Collector via Integrative Janus Membrane and Conical Spine with Micro/Nanostructures. H. Zhou, M. Zhang, C. Li, C. Gao, Y. Zheng*. Small 2018, 1801335.
  • 31. Multilevel Nanoparticles Coatings with Excellent Liquid Repellency. L. Zhou, S. Yin, Z. Guo, N. Yang, J. Li, M. Zhang, Y. Zheng*. Adv. Mater. Interfaces 2018, 1800405.
  • 32. Directional Droplet Spreading Transport Controlled on Tilt-Angle Pillar Arrays. Y. Lin, Z. Hu, C. Gao, Z. Guo, C. Li, Y. Zheng*. Adv. Mater. Interfaces 2018, 1800962.
  • 33. An Integrative Mesh with Dual Wettable On–Off Switch of Water/Oil. S. Feng, Y. Xing, S. Deng, W. Shang, D. Li, M. Zhang, Y. Hou,* Y. Zheng*. Adv. Mater. Interfaces 2018, 5, 1701193.
  • 34. Self-propelled droplet movement on micro/nano anisotropic structures surface. D. Li, Y, Zheng*, CHEMICAL JOURNAL OF CHINESE UNIVERSITIES (高等學(xué)?;瘜W(xué)學(xué)報(bào)). 2018, 39, 109-114.
  • 35. Directional bounce of droplets on oblique two-tiers conical structures. D. Li,S. Feng, Y. Xing, S. Deng, H. Zhou, Y. Zheng*. RSC Adv. 2017, 7, 35771-35775.
  • 36. One-step fabricated wettable gradient surface for controlled directional underwater oil-droplet transport. W. Shang, S. Deng, S. Feng, Y. Xing, Y. Hou, Y. Zheng*, RSC Adv., 2017, 7, 7885-7889.
  • 37. Controlled droplet transport to target on a high adhesion surface with multi-gradients. S. Deng, W. Shang, S. Feng, S. Zhu, Y. Xing, D. Li, Y. Hou*, Y. Zheng*. Sci. Rep. 2017, 7,45687.
  • 38. Robust Electrical Uni-directional De-icing Surface with Liquid Metal (Ga90In10) and ZnO Nano-Petal Composite Coatings. M. Zhang, S. Zhan, Z. He, J. Lu, H. Gui, J. Liu,*, Y. Zheng*, L. Wang*. Journal of Materials & Design. 2017,126, 291-296.
  • 39. Controlled transportation of droplets and higher fog collection efficiency on a multi-scale and multi-gradient copper wire. Y. Xing, S. Wang, S. Feng, W. Shang, S. Deng, L. Wang, Y. Hou*, Y. Zheng,*. RSC Adv. 2017, 7, 29606-29610.
  • 40. Robust superhydrophobic coatings with micro-and nano-composite morphology. J. Li, L. Zhou, N. Yang, C. Gao, Y. Zheng*, RSC Adv., 2017, 7, 44234-44238.
  • 41. A strategy of anti-fogging: air-trapped hollow microspheres-nanocomposites. M. Zhang, L. Wang, S. Feng, Y. Zheng*, Chem. Mater., 2017, 29 (7), 2899–2905.
  • 42. Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface. L. Wang, Q. Gong, S. Zhan, L. Jiang, Y. Zheng*. Adv. Mater. 2016, 28, 7729–7735.
  • 43. High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires. T. Xu, Y. Lin, M. Zhang, W. Shi, Y. Zheng*. ACS Nano, 2016, 10, 10681?10688.
  • 44. Manipulation on Wettable Gradient Surfaces with Micro-/Nano-Hierarchical Structure. Y. Hou, S. Feng, L. Dai*, Y. Zheng*. Chem. Mater. 2016, 28, 3625–3629.
  • 45. Magnetic-guided directional rebound of droplet on a superhydrophobic flexible needle surface. L. Wang, C. Gao, Y. Hou*, Y. Zheng*, L. Jiang., J. Mater. Chem. A, 2016, 2016, 4, 18289-18293.
  • 46. Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers. Y. Chen, D. Li, T. Wang, Y. Zheng*. Sci. Rep. 2016, 6, 19978.
  • 47. Lotus effect in wetting and self-cleaning. M. Zhang, S. Feng, L. Wang, Y. Zheng*. Biotribology 2016, 5, 31–43.
  • 48. Bioinspired Structure Materials to Control Water-collecting Properties. M. Zhang, Y. Zheng*. Materials Today: Proceedings, 2016, 3, 696-702.
  • 49. Coalesced-droplet transport to apex of magnetic-responsive cone spine array. L. Wang, M. Zhang, C. Gao, Y. Zheng*. Adv. Mater. Interfaces, 2016, 3, 1600145.
  • 50. Highly Efficient Fog Collection Unit by Integrating Artificial Spider Silks. H. Dong , Y. Zheng , N. Wang*, H. Bai , L. Wang , J. Wu , Y. Zhao*, L. Jiang. Adv. Mater. Interfaces 2016, 3, 1500831.
  • 51. Simultaneous synthesis/assembly of anisotropic cake-shaped porphyrin particles toward colloidal microcrystals. T. Wang, M. Kuang, F. Jin, J. Cai, L. Shi, Y. Zheng, J. Wang* & L. Jiang. Chem. Commun., 2016, 52, 3619-3622.
  • 52. Unique Necklace-Like Phenol Formaldehyde Resin Nanofi bers: Scalable Templating Synthesis, Casting Films, and Their Superhydrophobic Property. X. Wang , M. Zhang , R. Kou , L. Lu , Y. Zhao , X. Xu , G. Liu , Y. Zheng , & S. Yu*. Adv. Funct. Mater. 2016, 26, 5086–5092.
  • 53. Spider silk and bioinspired silk on wettability. L. Zhao, Y. Zheng*, Current Bionanotechnology, 2015. 1, 18-31.
  • 54. Controlling droplet transport to target on a gradient adhesion surface. S. Feng, S. Wang, Y. Zheng*, Y. Hou,*. Chem. Commun. 2015, 51, 6010 – 6013.
  • 55. Controlling of water collection ability by elasticity bioinspired fiber. S. Wang, S. Feng, Y. Hou,* Y. Zheng,*. Macromol. Rapid Commun. 2015, 36, 459?464.
  • 56. Bio-inspired Artificial Cilia with Magnetic Dynamic Properties. L. Sun, Y. Zheng*. Front. Mater. Sci. 2015, 9,178-184.
  • 57. Radial Wettability Gradient of Hot Surface to Control Droplets Movement in Directions. S. Feng, S. Wang, Y. Tao, W. Shang, S. Deng, Y. Hou,* Y. Zheng*. Sci. Rep. 2015, 5, 10067.
  • 58. Driving of Droplet on Nano-Gradient Microhump Surface in Low-Temperature and High-Humidity Environment. L. Wang, W. Shi, M. Zhang, S. Feng, Y. Hou, Y. Zheng*. Adv. Mater. Interfaces 2015, 1500040.
  • 59. Dynamic Magnetic Responsive Wall Array with Droplet Shedding-off Properties. L. Wang, M. Zhang, W. Shi, Y. Hou, C. Liu, S. Feng, Z. Guo, Y. Zheng*. Sci. Rep. 2015, 5, 11209.
  • 60. Controlled smart anisotropy unidirectional spreading of droplet on fibrous surface. M. Zhang, L. Wang, Y. Hou, S. Feng, Y. Zheng*. Adv. Mater. 2015, 27, 5057–5062.
  • 61. Wet-Induced Fabrication of Heterogeneous Hump-on-String Fibers. C. Song, R. Du & Y. Zheng*. Materials 2015, 8, 4249-4257.
  • 62. Excellent Anti-icing Abilities of Optimal Micro-pillars Arrays with Nano-hairs. W. Shi, L. Wang, Z. Guo, Y. Zheng*. Adv. Mater. Interfaces, 2015, 2, 1500352.
  • 63. Adhesion-Free Property on Low-Temperature Deformed Micro-Ratchet with Nano-Hairs. L. Wang, Y. Hou, M. Zhang, Z. Guo, W. Shi, & Y. Zheng*. Chem. J. Chinese U. 2015,36,1548-1552.
  • 64. Excellent bead-on-string silkworm silk fiber for drop-capturing ability. Y. Chen, L. Wang, Y. Xue, Y. Zheng*. J. Mater. Chem. A 2014, 2, 1230-1234.
  • 65. Strong anti-ice ability as nano-hairs over micro-ratchet structures. P. Guo, M. Wen, L. Wang, Y. Zheng*. Nanoscale 2014, 6, 3917-3920. (Front Cover)
  • 66. Wetting-controlled Strategies: from Theories to Bio-inspiration. C. Song, Y. Zheng*. J. Colloid Interface Sci. 2014, 427, 2-14 (Cover).
  • 67. Bioinspired One-Dimensional Materials for Directional Liquid Transport. J. Ju, Y. Zheng, L. Jiang*. Account Chem Res. 2014, 47 (8), 2342–2352.
  • 68. Water Collection Abilities of Green Bristlegrass Bristle. Yan Xue, Ting Wang, Weiwei Shi, Leilei Sun and Y. Zheng*. RSC Adv. 2014, 4 (77), 40837-40840.
  • 69. Ice-phobic gummed tape with nano-cones-on-microspheres. L. Wang, P. Guo, M. Wen, L. Jiang, Y. Zheng*. J. Mater. Chem. A 2014, 2, 3312-3316.
  • 70. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.  C. Liu, J. Ju, Y. Zheng*, L. Jiang*. ACS Nano 2014, 8, 1321-3129.
  • 71. Superhydrophobic to icephobic properties of micro-/nanostructure composite surfaces. M. Wen, Y. Zheng*. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2014, 35, 1011-1015.
  • 72. Anti-fogging and icing-delay properties on composite micro- and nanostructured surfaces. M. Wen, L. Wang, M. Zhang, L. Jiang, Y. Zheng*. ACS Appl. Mater. Interfaces 2014, 6, 3963-3968.
  • 73. Directional size-directed droplet target transport on bioinspired gradient fiber. Y. Xue, Y. Chen, T. Wang, L. Jiang, Y. Zheng*. J. Mater. Chem. A. 2014, 2 (20), 7156-7160. (Back Cover)
  • 74. Bioinspired wet-assembly fibers: from nanofragments to microhumps on string in mist.  C. Song, L. Zhao, W. Zhou, M. Zhang Y. Zheng*. J. Mater. Chem. A 2014, 2, 9465-9468.
  • 75. Controlled directional water droplet spreading on high adhesion surface. S. Feng, S. Wang, L. Gao, G. Li, Y. Hou,* Y. Zheng*. Angew. Chem. Int. Ed. 2014, 53, 6163–6167.
  • 76. Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns. H. Bai, L. Wang, J. Ju, R. Sun, Y. Zheng*, L. Jiang. Adv. Mater. 2014, 26, 5025-5030.
  • 77. Bioinspired One-Dimensional Materials for Directional Liquid Transport. J. Ju, Y. Zheng, L. Jiang. Account Chem. Res. 2014, 47 (8), 2342–2352.
  • 78. Directional Drop Transport Achieved on High-Temperature Anisotropic Wetting Surface. C. Liu, J. Ju, J. Ma*, Y. Zheng* and L. Jiang*. Adv. Mater. 2014, 26, 6086-6091.
  • 79. Bioinspired heterostructured bead-on-string fibers via controlling wet-assembly of nanoparticles. L. Zhao, C. Song, M. Zhang, Y. Zheng*, Chem. Commun. 2014, 26, 6086-6091.
  • 80. Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. Y. Hou, L. Gao, S. Feng, Y. Chen, Y. Xue, L. Jiang & Y. Zheng*. Chem. Commun. 2013, 49, 5253-5257. (Back cover)
  • 81. Bioinspired Micro-/Nanostructure Fibers with Water-collecting Properties. Y. Chen, Y. Zheng*. Nanoscale 2014, 6, 7703-7714.
  • 82. Water-assisted fabrication of porous bead-on-string fibers. S. Feng, Y. Hou*, Y. Chen, Y. Zheng* & L. Jiang. J. Mater. Chem. A 2013, 1, 8363-8366.
  • 83. Photo-controlled Water Gathering on Bio-inspired Fibers. S. Feng, Y. Hou,* Y. Xue, L. Gao,* L. Jiang & Y. Zheng*. Soft Matter 2013, 9, 9294-9297.
  • 84. Icephobic / anti-icing properties of micro- / nanostructured surfaces. P. Guo, Y. Zheng*, M. Wen, C. Song, Y. Lin & L. Jiang. Adv. Mater. 2012, 24, 2642-2648.
  • 85. Functional fibers with unique wettability inspired by spider silks. H. Bai, J. Ju, Y. Zheng* & L. Jiang*. Adv. Mater. 2012, 24, 2786-2791. (Inside Front Cover)
  • 86. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. M. Sun, A. Liang*, G. S. Watson, J. A. Watson, Y. Zheng*, J. Ju, & L. Jiang. PLoS ONE 2012, 7, e35056.
  • 87. Multi-structure and multi-function integrated fog collection system of cactus. J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang & L. Jiang*. Nat. Commun. 2012. 3:1247 | DOI: 10.1038/ncomms2253
  • 88. Condensed-drop Repellency of Butterfly Wings with Biological Photonic Crystals. H. Mei, D. Luo, J. Wang, Y. Zheng*. Chem. J. Chinese U. 2012, 33(03): 575-579.
  • 89. Controlling water capture of bio-inspired fibers with hump structures. X. Tian, Y. Chen, Y. Zheng*, H. Bai, & L. Jiang*. Adv. Mater. 2011, 23, 5486-5491. (Cover story, Highlight by RSC)
  • 90. Large-scale fabrication of bioinspired fibers for directional water collection. H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng,* & L. Jiang*. Small 2011, 7, 3429-3433. (frontispiece, Highlight by RSC)
  • 91. Controlled fabrication and water collection ability of bioinspired artificial spider silks. H. Bai, J. Ju, R. Sun, Y. Chen, Y. Zheng,* & L. Jiang*. Adv. Mater. 2011, 23, 3708-3711. (Cover story)
  • 92. Bio-inspired heterostructured fibers with bead-on-string to respond the environmental wetting. X. Tian, H. Bai, Y. Zheng*, & L. Jiang. Adv. Funct. Mater. 2011, 21, 1398-1402. (Back cover story)
  • 93. Moth Wing Scales Slightly Increase the Absorbance of Bat Echolocation Calls. J. Zeng, N. Xiang, L. Jiang, G. Jones, Y. Zheng, B. Liu, S. Zhang. PLOS ONE. 2011, 6, e27190.
  • 94. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes. M. Sun, A. Liang*, Y. Zheng, G. Watson, J. Watson, BIOINSPIRATION & BIOMIMETICS. 2011, 6, 026003.
  • 95. Organic Nanowire Crystals Combine Excellent Device Performance and Mechanical Flexibility. Q. Tang, Y. Tong, Y. Zheng, Y. He, J. Zhang, H. Dong, W. Hu*, T. Hassenkam, T. Bjornholm. Small 2011, 7, 189-193.
  • 96. Directional shedding-off of water on natural/bio-mimetic taper-ratchet array surfaces. P. Guo, Y. Zheng*, C. Liu & L. Jiang. Soft Matter 2012, 8, 1770-1775.
  • 97. Water collection behavior and hanging ability of bioinspired fiber. Y. Hou, Y. Chen, Y. Zheng* & L. Jiang*. Langmuir 2012, 28, 4737-4743.
  • 98. Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots. Y. Hou, Y. Chen, Y. Xue, L. Wang, Y. Zheng* & L. Jiang*. Soft Matter 2012, 8, 11236-11239.
  • 99. Multi-structure and multi-function integrated fog collection system of cactus.J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang & L. Jiang*. Nat. Commun. 2012, 3, 1247.
  • 100. Bioinspired spindle-knotted fibers with a strong water-collecting ability from humid environment. Y. Chen, L. Wang, Y. Xue, Y. Zheng* & L. Jiang. Soft Matter 2012, 8, 11450-11454.
  • 101. Condensed-drop repellency of butterfly wings with biological photonic crystals. H. Mei, D. Luo, J. Wang, & Y. Zheng*, Chem. J. Chinese U. 2012, 33, 575-579.
  • 102. Multi-level Micro-/Nanostructures of Butterfly Wing Adapt Low Temperature to Water Repellency. H. Mei, D. Luo, P. Guo, C. Song, C. Liu, Y. Zheng* & L. Jiang. Soft Matter 2011, 7, 10569-10573.
  • 103. Capillary adhesion of wetted cribellate spider capture silks for larger pearly hanging-drops. Z. Huang, Y. Chen, Y. Zheng* & L. Jiang. Soft Matter 2011, 7, 9468–9473.
  • 104. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes. M. Sun, A. Liang*, Y. Zheng*, G. S. Watson & J. A. Watson. Bioinsp. Biomim. 2011, 6, 026003.
  • 105. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang & L. Jiang. Soft Matter 2011, 7, 5948-5951
  • 106. Organic nanowire crystals combine excellent device performance and mechanical flexibility. Q. Tang, Y. Tong, Y. Zheng, Y. He, Y. Zhang, H. Dong, W. Hu, T. Hassenkam, T. Bj?rnholm. Small 2011, 7, 189-193.
  • 107. Moth wing scales slightly increase the absorbance of bat echolocation calls. J. Zeng, N. Xiang, L. Jiang, G. Jones, Y. Zheng, B. Liu, S. Zhang*. PLoS ONE 2011, 6, e27190.
  • 108. Bioinspired electrospun knotted microfibers for fog harvesting. H. Dong, N. Wang, L. Wang, H. Bai, J. Wu, Y. Zheng, Y. Zhao*, L. Jiang*. ChemPhysChem 2012, 13, 1153-1156.
  • 109. Direction-dependent adhesion of water strider’s legs for water-walking. L. Xu, X. Yao, Y. Zheng*. Solid State Sci. 2012, 14, 1146-1151.
  • 110. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. M. Liu, Y. Zheng, J. Zhai & L. Jiang*. Acc. Chem. Res. 2010, 43, 368-377.
  • 111. Effects of Chemical Composition and Nano-structures on the Wetting Behaviour of Lotus Leaves. J. Wang, K. Wang, Y. Zheng, L. Jiang. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE. 2010, 31, 1596-1599.
  • 112. Bioinspired fabrication of functional polymer photonic crystals. Y. Zhang, Z, Li, Y. Zheng, J. Wang*. AGRICULTURAL SCIENCES IN CHINA. 2010, 9, 1253-1261.
  • 113. The structural color of red rose petals and their duplicates. L. Feng, Y. Zhang, M. Li, Y. Zheng, W. Shen & L. Jiang. Langmuir 2010, 26(18), 14885-14888.
  • 114. Directional water collection on wetted spider silk. Y. Zheng, H. Bai, Z. Huang, X. Tian, F. –Q. Nie, Y. Zhao, J. Zhai & L. Jiang*. Nature 2010, 463, 640?643. (Cover story, Highlight by Nature, BBC, RSC et al)
  • 115. Direction controlled driving of tiny water drops on bio-inspired artificial spider silks. H. Bai, X. Tian, Y. Zheng*, J. Ju & L. Jiang*. Adv. Matter. 2010, 22, 5521-5525. (Cover story, Highlight by Nature, NPG Asia-materials).
  • 116. Ratchet-induced anisotropic behavior of superparamagnetic microdroplet. J. Zhang, J. Cheng, Y. Zheng* & L. Jiang. Appl. Phys. Lett. 2009, 94,144104.
  • 117. Wetting properties on nanostructured surfaces of cicada wings. M. Sun, G. S. Watson, Y. Zheng, J. A. Watson, & A. Liang. J. Exp. Biol. 2009, 212: 3148-3155.
  • 118. Extreme “water repellency” on strong water-spreading surface without tilted degree actuation. Y. Zheng*, L. Jiang, J. Wang & D. Han. Appl. Phys. Lett. 2008, 93, 094107.
  • 119. How does the leaf margin make the lotus surface dry as the lotus leaf floats on water? J. Zhang, J. Wang, Y. Zhao, L. Xu, X. Gao, Y. Zheng* & Lei Jiang*. Soft Matter 2008, 4, 2232-2237.  (Highlight by RSC)
  • 120. Colorful humidity sensitive photonic crystal hydrogel. E. Tian, J. Wang*, Y. Zheng, Y. Song*, L. Jiang, D. Zhu. J. Mater. Chem. 2008, 18, 1116-1122.
  • 121. In situ investigation on dynamic suspending of micro-droplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation. Y. Zheng*, D. Han, J. Zhai & L. Jiang. Appl. Phys. Lett. 2008, 92, 084106.
  • 122. Bubble Transfer Effect of Superhydrophobic Mesh Structure in Water. J. Wang, Y. Zheng, L. Jiang*. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE. 2008. 29, 2484-2488.
  • 123. Investigation on microstructure and wettability of mosquito's body surface. Y. Yao, X. Yao, Z. Li, H. Zhu, Y. Zheng*. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE. 2008, 29, 1826-1828.
  • 124. Characteristics of echolocating bats' auditory stereocilia length, compared with other mammals. Y. Qian, J. Zeng, Y. Zheng, J. Latham, B. Liang, L. Jiang, S. Zhang*. SCIENCE IN CHINA SERIES C-LIFE SCIENCES. 2007, 50, 492-496.
  • 125. Directional adhesion of superhydrophobic butterfly wings. Y. Zheng, X. Gao & L. Jiang. Soft Matter 2007, 3, 178-182. (Cover story, Highlighted by RSC).





Conferences:


  • 1.   The 15th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials & Molecular Electronics. Oral presentation & Section chair. Sep. 4-5, 2010, BUAA, Beijing, China.
  • 2.   The Xiangshan Science Conference on Biomimetic Materials and Devices (biomimetic materials and devices: structure, dynamics and function). 17-19, Oct, 2011, BUAA, Beijing, China.
  • 3.   The France-china symposium on advanced materials. Oral presentation. 5-7, Jan, 2012, BUAA, Beijing, China.
  • 4.   The 12th Conference on Solid State Chemistry and Inorganic Synthesis (CSSCIS–2012). Invited presentation. 27-30, Jun, 2012, Qingdao, China
  • 5.   The Asian Conference on Nanoscience & Nanotechnology (AsiaNANO2012). Invited presentation. 7-10, Sep., 2012, LiJiang, China.
  • 6.   The International Symposium on Nanomaterials and Nanodevices 2012 (ISNN-2012). Oral presentation & Section chair. 12-15, Sep., 2012, Suzhou, China.
  • 7.   The Second International Conference on Small Science (ICSS 2012). Invited presentation. 16-19 Dec. 2012, Orland Florida, USA.
  • 8.   The Third International Conference on Multifunctional, Hybrid and, Nanomaterials (HYMA 2013). Oral or Poster presentation. 3-7 Mar. 2013, Sorrento, Italy.
  • 9.   The 3rd International Colloids Conference - Colloids and Energy (COLL). Poster presentation. April 21-24, 2013, Xiamen, China.
  • 10.  The ChinaNano 2013. Oral presentation. Sep. 5-7, 2013, Beijing, China.
  • 11.  The BIT’s 3rd Annual World Congress of Nano-S&T 2013. Invited presentation. Sep. 26-28, 2013. Xian, China.
  • 12.  The 4th Trilateral Conference on Advances in Nanoscience. Invited presentation. Dec. 4-7, 2013, Singapore.
  • 13.  The 2nd International Conference on BioTribology, Oral presentation, May, 11-14, 2014, Toronto, Canada.
  • 14.   The International Conference on Environmental Science and Technology (EST2014). Oral presentation. Jun. 9-13, 2014, Houston, Texas, USA.
  • 15.   The TechConnect World 2014 (Nanotech, Microtech, Biotech, Cleantech). Oral presentation. Jun. 15-19, 2014, Washington, DC, USA.
  • 16.   The theme of Energy, Materials and Nanotechnology (EMN). Invited presentation. “Bio-Inspired Multi-gradient Surface Materials for Water Collection”. Sep. 21-25, 2014. Chengdu, China.
  • 17.   The Third International Conference on Energy and Environment-Related Nanotechnology (ICEEN 2014). Invited presentation. Oct 24-27, 2014, Beijing, China.
  • 18.   The BIT’s 4th Annual World Congress of Nano Science & Technology. Invited presentation. Oct, 29-31, 2014. Qingdao, China.
  • 19.   The International Conference on Small Science (ICSS 2014). Invited presentation. Dec, 8-11, 2014, Hong Kong, China.
  • 20.    The Fourth International Conference on Multifunctional, Hybrid and Nanomaterials(HYMA 2015), Poster presentation, March 9-13 2015, in Sitges (near Barcelona), Spain.
  • 21.   The 1st Annual World Congress of Smart Materials-2015 (WCSM-2015), with the theme “Co-creating Dream of Smartness”, Session 1002: Functional fiber materials. Invited presentation. March 23-25, 2015, Busan, Republic of Korea
  • 22.   The 4th Annual World Congress of Advanced Materials-2015 (WCAM-2015). Invited presentation. May 27-29, 2015.
  • 23.   The International Conference and Expo on Smart Materials & Structures (Smart Materials-2015), invited as organizing committee, and Invited presentation. June 15-17, 2015, Los Angeles, USA.
  • 24.   The International Conference on Advances in Functional Materials. Oral presentation. June 29th, to July 3rd, 2015. Stony Brook University, Long Island, NY, USA.
  • 25.   The 1st International Conference on Applied Surface Science. Oral presentation. July 27-30, 2015, Shanghai, China.
  • 26.   The Advanced Materials World Congress. Invited presentation. August 23-26, 2015. Sweden.
  • 27.   The 5th Annual World Congress of Nano Science and Technology-2015 (Nano S&T-2015),
  • Theme of “Small Size, Big World”. Invited presentation. September 24-26, 2015, in Xi’an, China.
  • 28.   International Symposium on Bioinspired Interfacial Materials with superwettability” (iBIMS-2016). Invited presentation. January, 9-12, 2016, in Shanghai, China.
  • 29.   The First Middle-Eastern Materials Science Conference. Invited presentation. March, 22–23, 2016, Abu Dhabi, United Arab Emirates, New York University.
  • 30.   SMILE-2016 International Conference on Bio-Inspired Materials. Invited presentation, April 6-8, 2016, IFP Energies nouvelles, Rueil-Malmaison, France.
  • 31.   3rd NANOSMAT-USA. Invited Speaker. May, 18-20, 2016. University of Texas at
  • Arlington, USA.
  • 32.   2016 globe conference on polymer & composite materials. Invited presentation. May, 20-23, 2016. Hangzhou, China.
  • 33.  Nanotech France 2016, keynote presentation, June 1-3, 2016, Paris, France
  • 34.  5th International Conference Smart and Multifunctional Materials, Structures and Systems, June 5-9, 2016, Perugia, Italy.
  • 35.  5th World Congress on Materials Science & Engineering (Materials Congress-2016), Invited presentation, June 13-15, 2016, Alicante, Spain.
  • 36.   The 5th International Conference of Bionic Engineering (Invited speaker), June 21-24, 2016, Ningbo at the University of Nottingham Ningbo (UNNC) campus.
  • 37.   The 7th International Conference on Fog, Fog Collection and Dew, Invited presentation, July, 24-29, 2016. Wroc?aw, Poland.
  • 38.   European Advanced Materials. Invited presentation, 23-25 August 2016, Sweden.
  • 39.   International Conference and Exhibition on Nanomedicine and Nanotechnology, Nanomaterials and nanotechnology, October, 12-14, 2016, Baltimore, USA.
  • 40.   3rd International Conference on Bioinspired and Biobased Chemistry & Materials, Invited Speaker, October 16-19, 2016, Nice, France.
  • 41.   Global Congress & Expo on Materials Science & Nanoscience Materials Science-2016, Invited speaker, October, 24-26, 2016, Dubai.
  • 42.   World Congress on Materials Science & Polymer Engineering (Keynote presentation, Organizing Committee Member for Materials Science-2016), Nov. 28-30, 2016, Abu Dhabi, UAE.
  • 43.   American Advanced Materials Congress, Invited speaker, Dec, 4-9, 2016, Miami, USA.
  • 44.   2017 International Conference on Metrology and Properties of Engineering Surfaces. Invited speaker. June 26-29 2017. G?teborg, Sweden.
  • 45.   the 7th International Multidisciplinary Conference on Optofluidics (Optofluidics2017). Invited speaker, 25 to 28 July 2017, in Singapore.
  • 46.   the 644. WE-Heraeus-Seminar on “Bio-inspired, Nano- and Microstructured Surfaces: New Functionality by Material and Structure”, Invited Speaker. 29 – 31 May, 2017. In Physikzentrum Bad Honnef, Germany.
  • 47.   20th International Conference on Advanced Nanotechnology. Keynote Speaker. September 11-12, 2017 in Amsterdam, Netherland.
  • 48.   2018 MRS Spring Meeting of the MATERIALS RESEARCH SOCIETY. Invited Speaker. April 2-6, 2018 at the Phoenix Convention Center in Phoenix, Arizona.
  • 49.    the 4th International Conference on Bioinspired and Biobased Chemistry and Materials. Keynote Speaker. 14-17 October 2018. In Nice, France.
  • 50.   Shape Memory Applications, Research and Technology SMART 2018. Keynote Speaker. 5-9 December 2018. Hong Kong.
  • 51. The Silver Jubilee Assembly of Advanced Materials Congress (AFMC 2019). Keynote, Speaker. 24 -27 March 2019. Stockholm, Sweden.
  • 52. NANO Boston Conference (NWC Boston 2019), Invited Speaker. April 22-24, 2019, Boston, USA.
  • 53. The 2 nd International Conference on Nanomaterials and Nanotechnology. Oral speaker. May 16-17, 2019, Prague, Czech Republic.
  • 54. First International Conference on Nature Inspired Surface Engineering (NISE). Invited speaker.  June 12- 14, 2019, Stevens Institute of Technology, Hoboken, New Jersey, USA.
  • 55. the 2019 TechConnect World Innovation Conference & Expo. Oral Speaker, June 17-19, 2019, at the Hynes Convention Center, Boston, Massachusetts, U.S.A.
  • 56. Annual Congress on Smart Materials 2019. Oral Speaker, July 08-10, 2019 at Prague, Czech Republic.
  • 57. Celebration of 5 th anniversary of the AFM conference. Invited Speaker. July 22-24, 2019, the conference at George Washington University, DC.
  • 58. Nanotech Forum 2019 with the theme “Nanotechnology-The science of miniature scale”. Keynote, Speaker. July 17-18, 2019 Zurich, Switzerland.
  • 59. International Conference on Advances in Functional Materials in UCLA (AAAFM-UCLA). Invited Speaker. Aug 19-22, 2019, at the University of California, Los Angeles, USA.
  • 60. Nature-Inspired Engineering (NIE). Keynote, Speaker. September 8-13, 2019, at Cetraro (Calabria), Italy.
  • 61. the SIPS 2019 -Sustainable Industrial Processing Summit & Exhibition. Invited Speaker. 23-27 Oct 2019, Paphos, Cyprus.
  • 62. the 3 rd International Caparica Christmas Conference on Translational Chemistry-IC 3 TC 2019. Keynote Speaker, December 2019, days 01-05 in the Caparica Village (Costa de Caparica) in Setubal area, Portugal.
  • 63. International Symposium on Superwettability. Invited Speaker, January 12-15, 2020, Singapore.
  • 64. The 7th International Conference of Bionic Engineering (ICBE 2023). Keynote Speaker, October 12-15, 2023, Wuhan, China.


主站蜘蛛池模板: 弥渡县| 孟连| 明光市| 彭山县| 新源县| 额尔古纳市| 凤山县| 松溪县| 安阳县| 炉霍县| 平山县| 台前县| 恩平市| 安多县| 江孜县| 河北区| 朝阳区| 晋州市| 禹州市| 化隆| 广南县| 金坛市| 普陀区| 崇信县| 肇源县| 黑山县| 海原县| 朝阳市| 长春市| 鄢陵县| 厦门市| 怀安县| 都江堰市| 鹰潭市| 安泽县| 讷河市| 耒阳市| 垫江县| 铁岭市| 勐海县| 广德县|