私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:上海市閔行區東川路800號上海交通大學化學化工學院化學A樓525
  • Zip:200240
  • Tel:021-54742664
  • Fax:
  • Email:yfzhou@sjtu.edu.cn
Current Location :> Home > Publications > Text
Influence of Branching Architecture on Polymer Properties
writer:Zhu, X.Y.*; Zhou, Y. F.*; Yan, D. Y.*
keywords:applications,branching architecture,degree of branching,hyperbranched,linear polymers,polymer properties,self-assembly,structure-property relations
source:期刊
specific source:J. Polym. Sci., Part B: Polym. Phys 2011, 49, 1277. http://onlinelibrary.wiley.com/doi/10.1002/p
Issue time:2011年
Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self-assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology.