2023Tr?ger’s Base (TB)-Based Polyimides as Promising Heat-Insulating and Low-K Dielectric Materials
作者:Jian Lu, Yu Zhang, Jing Li, Meifang Fu, Guoxiang Zou*, Shinji Ando, and Yongbing Zhuang*
關鍵字:polyimides, heat-insulating polymers, low-k dielectric materials
論文來源:期刊
具體來源:Macromolecules, https://doi.org/10.1021/acs.macromol.2c02148
發表時間:2023年
隨著5G時代的到來,電子產品向高頻高速數字信號傳輸方向發展,集成電路的小型化和集成化使得芯片尺寸越來越小。隨著芯片內部組件間的距離逐漸縮小,信號傳輸的延遲使得芯片的性能大大降低。作為集成電路主要的絕緣材料,常規PI薄膜的介電常數在3.0~3.5范圍內,愈來愈無法滿足高頻率集成電路的性能要求。
高溫隔熱材料(薄膜或泡沫)在航空航天、建筑、阻燃和防火領域具有廣泛的應用,例如用于儲存和長途運輸氫氣或稀有氣體的隔熱薄膜和泡沫,其市場規模正在不斷擴大。高性能隔熱材料應具有良好的機械強度、低導熱性、低密度和優異的耐高溫和低溫性。例如,消防設備要求重量輕、隔熱性好,從而減輕消防設備的重量,這將提高消防設備的性能和消防操作的成功率。PI基的隔熱材料因其輕質、良好的機械和耐熱性能等優點而備受關注。然而,傳統的PI膜的面外導熱系數為0.1-0.5 W/(mK),隔熱和保溫性能有待提高。
朝格爾堿基(Tro?ger’s base (TB))是剛性的v形橋聯雙環連接基團,研究人員將其引入到聚酰亞胺(PI)主鏈中,制備了基于TB的聚酰亞胺(PI-TB-B和PI-TB-P),調查了PI的結構和性能(包括折射率、面內/外雙折射、透明性、導熱系數和介電性能等,構建了PI的分子結構與導熱系數和介電性質(低頻率(1 kHz~1MHz)和高頻(10 GHz)條件)等物理性質之間的相關性。TB基PI膜在10GHz下表現出低介電常數(Dk=2.25-2.80)。特別地,PI-TB-N在10GHz下顯示出超低的Dk=2.25,這低于商業化Kapton(PMDA-ODA,Dk>3.5)、6FDA基(Dk=2.37-2.95)、BPADA基(Dk=2.83-3.18)、酯基(Dk=2.44-3.26)PI和其他低介電聚合物,包括聚醚(PES,Dk≈2.4),聚(亞苯基醚)(PPEs,Dk=2.4-2.6)和苯并環丁烯(BCB)基聚合物(Dk=2.6-2.8)等。
另外,這些PI也表現優異的隔熱性,與商業聚酰亞胺膜 Kapton(0.240 W/mK)相比,它們具有超低的導熱系數(λ=0.035-0.145 W/m K)。所有TB基PI膜的λ值均低于0.145W/(mK),遠低于商業Kapton(PMDA-ODA,λ=0.16-0.25W/(mK)(文獻)和λ=0.240W/(mK)(本研究))以及其他報道的PI膜(λ=0.15-0.26W/(mK)的導熱系數。值得一提的是,其中,PI-TB-P顯示出超低的λ值(0.035W/(mK)),僅為商業膜 Kapton的1/8,這是迄今為止報道的所有PI薄膜中最低的λ值,表明TB基的PI膜作為隔熱材料的潛在應用前景。
研究還結合PI分子結構參數的計算,系統考察了將TB結構引入PI主鏈對聚集態結構和物理性質的影響。這項工作為隔熱和低介電PI材料的分子結構設計提供了新的思路。
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:普通表格;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-pagination:widow-orphan;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:等線;
mso-ascii-font-family:等線;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:等線;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:等線;
mso-hansi-theme-font:minor-latin;
mso-font-kerning:1.0pt;}
隨著5G時代的到來,電子產品向高頻高速數字信號傳輸方向發展,集成電路的小型化和集成化使得芯片尺寸越來越小。隨著芯片內部組件間的距離逐漸縮小,信號傳輸的延遲使得芯片的性能大大降低。作為集成電路主要的絕緣材料,常規PI薄膜的介電常數在3.0~3.5范圍內,愈來愈無法滿足高頻率集成電路的性能要求。
高溫隔熱材料(薄膜或泡沫)在航空航天、建筑、阻燃和防火領域具有廣泛的應用,例如用于儲存和長途運輸氫氣或稀有氣體的隔熱薄膜和泡沫,其市場規模正在不斷擴大。高性能隔熱材料應具有良好的機械強度、低導熱性、低密度和優異的耐高溫和低溫性。例如,消防設備要求重量輕、隔熱性好,從而減輕消防設備的重量,這將提高消防設備的性能和消防操作的成功率。PI基的隔熱材料因其輕質、良好的機械和耐熱性能等優點而備受關注。然而,傳統的PI膜的面外導熱系數為0.1-0.5 W/(mK),隔熱和保溫性能有待提高。
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:普通表格;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-pagination:widow-orphan;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:等線;
mso-ascii-font-family:等線;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:等線;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:等線;
mso-hansi-theme-font:minor-latin;
mso-font-kerning:1.0pt;}
隨著5G時代的到來,電子產品向高頻高速數字信號傳輸方向發展,集成電路的小型化和集成化使得芯片尺寸越來越小。隨著芯片內部組件間的距離逐漸縮小,信號傳輸的延遲使得芯片的性能大大降低。作為集成電路主要的絕緣材料,常規PI薄膜的介電常數在3.0~3.5范圍內,愈來愈無法滿足高頻率集成電路的性能要求。
高溫隔熱材料(薄膜或泡沫)在航空航天、建筑、阻燃和防火領域具有廣泛的應用,例如用于儲存和長途運輸氫氣或稀有氣體的隔熱薄膜和泡沫,其市場規模正在不斷擴大。高性能隔熱材料應具有良好的機械強度、低導熱性、低密度和優異的耐高溫和低溫性。例如,消防設備要求重量輕、隔熱性好,從而減輕消防設備的重量,這將提高消防設備的性能和消防操作的成功率。PI基的隔熱材料因其輕質、良好的機械和耐熱性能等優點而備受關注。然而,傳統的PI膜的面外導熱系數為0.1-0.5 W/(mK),隔熱和保溫性能有待提高。
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:普通表格;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-pagination:widow-orphan;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:等線;
mso-ascii-font-family:等線;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:等線;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:等線;
mso-hansi-theme-font:minor-latin;
mso-font-kerning:1.0pt;}
The correlations between the molecular structures of
four Tro?ger’s base (TB)-based polyimides (PIs) and two non-TB
containing analogues and physical properties including thermal conductivity (λ) and dielectric
properties both at low- and high-frequencies were investigated in detail. The
TB-based PI films exhibited low dielectric constants (Dk=2.25-2.80)
at 10 GHz. They possessed much lower λ values (0.035-0.145 W/mK) compared to the
commercial PI Kapton (0.240 W/mK). The influences of incorporating TB units into chain backbones on
aggregation structures and physical properties of PIs were identified. Incorporating TB units into chain backbones
effectively reduced the degree of chain orientation and increased fractional
free volume, leading to both low Dk and low λ values for the resulting PI films. Also,
introducing TB units enhanced molecular weights, toughness, and
glass-transition temperature (Tg) of the resulting
PIs. Therefore, the TB-based PIs can be promising as heat-insulating and low-k
dielectric materials.
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:普通表格;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-pagination:widow-orphan;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:等線;
mso-ascii-font-family:等線;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:等線;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:等線;
mso-hansi-theme-font:minor-latin;
mso-font-kerning:1.0pt;}
The correlations between the molecular structures of
four Tro?ger’s base (TB)-based polyimides (PIs) and two non-TB
containing analogues and physical properties including thermal conductivity (λ) and dielectric
properties both at low- and high-frequencies were investigated in detail. The
TB-based PI films exhibited low dielectric constants (Dk=2.25-2.80)
at 10 GHz. They possessed much lower λ values (0.035-0.145 W/mK) compared to the
commercial PI Kapton (0.240 W/mK). The influences of incorporating TB units into chain backbones on
aggregation structures and physical properties of PIs were identified. Incorporating TB units into chain backbones
effectively reduced the degree of chain orientation and increased fractional
free volume, leading to both low Dk and low λ values for the resulting PI films. Also,
introducing TB units enhanced molecular weights, toughness, and
glass-transition temperature (Tg) of the resulting
PIs. Therefore, the TB-based PIs can be promising as heat-insulating and low-k
dielectric materials.