私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:四川省成都市一環路南一段24號 四川大學 高分子材料工程國家重點實驗室
  • Zip:610065
  • Tel:028 85408288
  • Fax:028 85402465
  • Email:hwzou@163.com
Current Location :> Home > Publications > Text
Enhancement in thermal conductivity and mechanical properties via large-scale fabrication of boron itride nanosheets
writer:Shengzhao Li, Tuantuan Yang, YiranKong, Huawei Zou*, Mei Liang*, Yang Chen
keywords:Large-scale fabrication, boron nitride nanosheet, polymeric nanocomposites, thermal conductivity, mechanical properties
source:期刊
specific source:High Performance Polymers, 2017, 29 (3): 315-327.
Issue time:2016年

ABSTRACT: In this study, a facial method of fabricating hexagonal boron nitride nanosheet (BNNS) was proposed. Isopropyl alcohol was employed as the solvent to obtain the BNNS via exfoliation of the pristine hexagonal boron nitride. The yield of the exfoliated BNNS with thickness less than 20 nm was as high as 0.17–0.2 mg mL1. The BN- and BNNS-filled polyamide 6 (PA6) composites were subsequently prepared by melt blending, and a comparison of thermal conductivity and mechanical properties of the resultant composites were demonstrated. Results indicated that the PA6/BNNS composites showed superior mechanical and thermal conductive properties when compared with that of neat PA6 and PA6/BN composites. At a filler-loading fraction of 40 wt%, thermal conductivity of the PA6/BNNS composite reached 2.496 W mK1, which was 21.8% higher than that of PA6/BN composites at the same filler-loading concentration. In addition, the tensile strength of PA6/BNNS composites was invariably higher than that of neat PA6, with a 6.23% increment at a filler concentration of 30 wt%. Based on the results of differential scanning calorimetry, a new crystallization peak (TCC, 2) was observed at higher temperature region for the filler-containing composites and the position of the new peak gradually shifted to higher temperatures with an incremental loading concentration of BN and BNNS.