私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:武漢珞獅路122號(hào)
  • Zip:430070
  • Tel:027-87651837
  • Fax:
  • Email:msc@whut.edu.cn
Current Location :> Home > News > Text
From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER and Zn-air Batteries

Designing a highly active electrocatalyst with optimal stability at low cost is must and non‐negotiable if large‐scale implementations of fuel cells are to be fully realized. Zeolitic‐imidazolate frameworks (ZIFs) offer rich platforms to design multifunctional materials due to their flexibility and ultrahigh surface area. Herein, an advanced Co–Nx/C nanorod array derived from 3D ZIF nanocrystals with superior electrocatalytic activity and stability toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) compared to commercial Pt/C and IrO2, respectively, is synthesized. Remarkably, as a bifunctional catalyst (Ej = 10 (OER) ? E1/2 (ORR) ≈ 0.65 V), it further displays high performance of Zn–air batteries with high cycling stability even at a high current density. Such supercatalytic properties are largely attributed to the synergistic effect of the chemical composition, high surface area, and abundant active sites of the nanorods. The activity origin is clarified through post oxygen reduction X‐ray photoelectron spectroscopy analysis and density functional theory studies. Undoubtedly, this approach opens a new avenue to strategically design highly active and performance‐oriented electrocatalytic materials for wider electrochemical energy applications.