私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:武漢珞獅路122號
  • Zip:430070
  • Tel:027-87651837
  • Fax:
  • Email:msc@whut.edu.cn
Current Location :> Home > News > Text
Ultralow Ru Loading Transition Metal Phosphides as High‐Efficient Bifunctional Electrocatalyst for a Solar‐to‐Hydrogen Generation System
Water splitting is a promising technology for sustainable conversion of hydrogen energy. The rational design of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalysts with superior activity and stability in the same electrolyte is the key to promoting their large‐scale applications. Herein, an ultralow Ru (1.08 wt%) transition metal phosphide on nickel foam (Ru–MnFeP/NF) derived from Prussian blue analogue, that effectively drivies both the OER and the HER in 1 m KOH, is reported. To reach 20 mA cm?2 for OER and 10 mA cm?2 for HER, the Ru–MnFeP/NF electrode only requires overpotentials of 191 and 35 mV, respectively. Such high electrocatalytic activity exceeds most transition metal phosphides for the OER and the HER, and even reaches Pt‐like HER electrocatalytic levels. Accordingly, it significantly accelerates full water splitting at 10 mA cm?2 with 1.470 V, which outperforms that of the integrated RuO2 and Pt/C couple electrode (1.560 V). In addition, the extremely long operational stability (50 h) and the successful demonstration of a solar‐to‐hydrogen generation system through full water splitting provide more flexibility for large‐scale applications of Ru–MnFeP/NF catalysts.